Reconstruction of neutral mesons and discussion of the electron purity

V. Riabov

Outline

- Neutral mesons: π^0 and η reconstruction vs. centrality, MC closure tests
- Electron purity and dielectrons, future plans

Neutral mesons

Previously ...

• 4M events, UrQMD. Minbias AuAu@11, realistic vertex distribution, first centralized prod-n

- Last time:
 - ✓ presented MC closure test results for π^0 in minbias AuAu@11, 4M events
 - \checkmark fully corrected reconstructed spectrum matches the generated one within uncertainties
 - \checkmark observed systematic effects at low momentum related to peak shape uncertainties
 - ✓ observed peaks for η with ~ 15M minbias AuAu@11
- Today:
 - ✓ higher statistics, minbias AuAu@11, ~ 15M events
 - \checkmark centrality dependence + η in minbias collisions
 - ✓ tighter cuts to minimize systematic effects

π^0 reconstruction, optimal cuts

- Cuts optimized for better π^0 and η significance :
 - ✓ Events: UrQMD, |z-vertex| < 50 cm
 - ✓ Photons: $E_{core2\%}$ > 0 GeV, $T_{reduced}$ < 2 ns, charged track veto, Chi2/NDF < 4.0
 - ✓ Pairs: , |en1-en2|/(en1+en2) < 0.75, |y| < 0.5

- Efficiency for π^0 is > 10%, increasing with p_T
- Signal is measurable starting from ~ 50 MeV/c, \sim the whole production spectrum is sampled
- Maximum raw yield of π^0 is expected at ~ 300 MeV/c
- The cuts provide Gaussian-like shapes of the reconstructed peaks on top of the correlated background, deviations are still present

π^0 mass and width vs. centrality

• Same cuts and selections for all centralities

- Reconstructed mass increases with multiplicity and p_T:
 - \checkmark shower merging at high multiplicity
 - \checkmark energy leakage and non-linearity
- Reconstructed width increases with multiplicity and decreases with p_T :
- ✓ energy resolution is multiplicity dependent
- $\checkmark\,$ energy resolution improves with increasing energy

π^0 reconstruction efficiency vs. centrality

• Same cuts and selections for all centralities

- Reconstruction efficiency shows strong multiplicity dependence:
 - ✓ multiplicity dependence of false track matching (false veto)
 - \checkmark larger fraction of merged clusters with non-EM shower shapes at high multiplicity

π^0 in minbias AuAu@11: MC closure test

- Statistical fluctuations are much reduced with higher statistics (15M events vs. 4M events)
- Reconstructed spectrum matches the generated one within uncertainties
- Reliable raw yield extraction starts at $p_T > 50 \text{ MeV/c}$
- Signal is present at lower $p_T < 50$ MeV/c but the signal shape is not trivial
- Small systematic effects at low momentum remain

π^0 in 0-20% AuAu@11: MC closure test

- Reconstructed spectrum matches the generated one within uncertainties
- Reliable raw yield extraction starts at $p_T > 50 \text{ MeV/c}$
- Signal is barely seen at lower $p_T < 50 \text{ MeV/c}$
- Systematic effects at low momentum are smeared by statistical uncertainties

π^0 in 60-90% AuAu@11: MC closure test

- Reconstructed spectrum matches the generated one within uncertainties
- Reliable raw yield extraction starts at $p_T > 50 \text{ MeV/c}$
- Systematic effects are minimal

η reconstruction in minbias AuAu@11

- Efficiency is higher compared to π^0 due to higher decay photon energies
- Produced at much lower rate compared to π^0 at low $p_T < 2-3$ GeV/c, $\eta/\pi \sim 0.5$ at $p_T >> 1$
- $\eta \rightarrow \gamma \gamma$ results in a much wider peak (~40 MeV/c vs. ~10 MeV/c for π^0) \rightarrow need much larger statistics for observation of the signal
- Signal is observed with 15M sampled AuAu@11 events
- Multiplicity dependent study needs higher statistics (embedded simulations)

η in minbias AuAu@11: MC closure test

- Coarse p_T binning and large statistical uncertainties
- Reconstructed spectrum matches the generated one within uncertainties
- Possible systematic effects are smeared by statistical fluctuations

Status & conclusions

- Neutral pions can be reliably reconstructed at $p_T > 50 \text{ MeV/c}$ with $> 10^7$ sampled AuAu@11 events (given the full acceptance)
- Some issues with π^0 signal shape at low p_T remain \rightarrow focus is on low p_T signal reconstruction, look at alternative γ -ID and cut selections
- Centrality dependent studies for η require embedded simulations
- Consistency of simulated ECAL parameters with the beam test results is the remaining task

(Di)electrons

Particle identification, TOF: MPD

- Observed non-physical tail (β > 1) in the TOF: much more prominent in high multiplicity events (b < 1 fm); the tail is almost absent in peripheral collisions (b > 12 fm)
- Ascribed the effect to track mismatching in the TOF

Particle identification, TOF: STAR PHYSICAL REVIEW C 92, 024912 (2015)

• Similar non-physical effect of $1/\beta < 1$ is observed in the TOF

- Same centrality dependence as in the MPD: the tail is prominent in central collisions; the tail goes away in peripheral collisions
- Similar conclusions on the source of the tail:

with increasing multiplicity the fake association fraction increases substantially. These random associations were further confirmed using MC GEANT [28] simulations.

• Degree of contamination depends on the matching criteria, which are not transparent for the MPD and STAR

Electron purity: MPD vs. STAR

- STAR reports better electron purity at p > 600 MeV/c using TPC&TOF only
- Note rather large uncertainties at $p\sim 500$ MeV/c and $p\sim 1000$ MeV/c
- Can we directly compare the purities between the MPD and STAR → no, because the final purity depends on the initial (before eID) e/h ratio as a function of momentum
- What drives the e/h ratio in different momentum ranges?

Sources of electrons: MPD

- Minbias AuAu@11 collisions (centralized production #3, AuAu@11 with Geant-3)
- Only TPC e^{\pm} tracks matched to the TOF are selected, the only difference is in DCAx,y,z cuts
- With tight DCAx,y,z cuts the main source of electrons is π^0 (Dalitz decays)
- With no DCAx,y,z selections, the electron spectrum is totally dominated (by an order of magnitude) by conversion electrons while contributions from π^0 and η remain ~ the same
 - → Comparison of the electron purities make sense only when contributions of conversion are comparable in the experiments (materials and cuts)

- MPD: p_T -dependent 2σ cut on DCAx, y, z; mean&width is parameterized for inclusive tracks
 - STAR: the only mention is:
 the distance of closest approach (DCA) to the primary vertex should be less than 1 cm in order to reduce contributions from secondary decays;
- The DCA < 1 cm cut for the MPD is consistent at low momentum and is too loose at high p_T
- Contribution of conversion in the MPD is much larger with DCA < 1 cm cut at p > 500 MeV/c → just the place where the purities start to diverge in the MPD and STAR

- Purity gets better with looser DCA cuts due to larger contamination by conversion electrons
- The purity with "STAR-like" DCA cut is still worse than that at STAR at p > 1.3 GeV/c

- Only tracks matched to TOF; tracks with TOF e-ID by $|1/\beta 1| < 0.025$ on the bottom
- For the MPD, the $|1/\beta 1| < 0.025$ cut is pretty much the same as 2σ TOF-eID cut
- Selection power of $|1/\beta 1| < 0.025$ is stronger at STAR, higher track mismatching in MPD?
- Obvious difference for TPC π -ID between MPD and STAR (see also next slide)

TPC eID: MPD vs. STAR

V. Riabov, PWG4-ECAL Meeting, 25.06.2020

eID efficiency: STAR

$$\begin{split} \varepsilon_{\mathrm{eID}} &= \varepsilon_{\beta} \times \varepsilon_{\mathrm{dEdxPID}} \\ \varepsilon_{\mathrm{dEdxPID}} &= \varepsilon_{\mathrm{ndEdx}} \times \varepsilon_{\mathrm{n}\sigma_{\mathrm{e}}} \end{split}$$

- Single eID efficiency at $p_T > 200 \text{ MeV/c} \text{ (STAR)}: ~ 0.45 \cdot (0.93-0.75) = 30-40\%$
- The MPD TPC-TOF-ECAL single eID efficiency with tight cuts is comparable

Dielectrons, MPD

- 15M minbias AuAu@11, MPD with TPC&TOF eID only
- Higher electron purity corresponds to smaller hadron contamination
- The ω/ϕ peak significance does not improve because of smaller efficiency
- Higher purity does not automatically mean better signal

Status & conclusions

- Single electron purity & efficiency should be considered together, for each observable
- TOF tail ($\beta > 1$) is from track mismatching, confirmed by similar observations in STAR
- e-purity in the MPD is worse than that in the STAR on the average:
 - \checkmark dE/dx bands for charged electrons/pions are different
 - ✓ TOF matching parameters are most suspicious → need more details
- Need more input on the generated signals: PLUTO ... ?
- Plans:
 - \checkmark conversion rejection
 - ✓ scaling to PHSD predictions
 - \checkmark setup new simulation with fixed resonance widths and η -Dalitz phase space