

New results of ECAL test at electron beam at Troitsk

V.V. Kulikov for ECAL group

PWG4 & MPD-ECAL meeting 25.06.2020

Measurements on electron beam of Pahra accelerator and cosmic rays have been performed at 28-30 of January 2020 by JINRgroup (I.Typkin) and FIAN-group (V.Baskov). Data analysis has been performed independently by JINR-group and ITEP-group (V.Kulikov, M.Martemianov.M.Matsyuk).

Under test were 3 modules (48 towers) of central type. Two modules were produced at IHEP (Protvino)

Pahra accelerator complex

Pahra accelerator

MPPC signal measured by ADC

Very nice electronics: negligible pedestal, afterpulses only on 1% level. Deposit energy can be measured as a sum of counts in a range of ADC channels, as area under fit by p0*t*t*exp(t/p2), where t=x-p1 and x is ADC channel , and as maximal amplitude.

Towers non-identity correction

Using Cosmic Rays 600 Maharnab Bhattacharjee 500 obtained relative 400 correction coefficients for 300 each of 47 towers. These 200 coefficients change from **1.37 to 0.78.** This slide 100 demonstrate the influence o 200 n of this energy correction for 293 and 54 MeV 000 beams. It reduces energy resolution by 5% at 293 800 MeV electrons and will be 600 more important for 400 different positions of the 200 beam.

With correction

Fit works better but is slow and less reliable, sum over 30 ch. will be used

Linearity and resolution energy dependence

Beam Energy, MeV	293	196	98	54	
ECal measured, %	8.1	9.1	12.3	16.3	(accuracy 0.1-0.05)
e-beam spread	3.4	5.4	7.5	11.0 +/-	10% given by V.Baskov
ECal corrected(*), %	7.4	7.4	9.8	12.0	
MC , %	7.1	8.5	11.7	15.6	
ECal to MC ratio	1.04	0.87	0.84	0.77	

Beam Energy, MeV	293	196	98	54	
ECal measured, %	8.1	9.1	12.3	16.3	(accuracy 0.1-0.05)
e-beam spread	3.4	3.4	3.4	3.4	// my guess
ECal corrected(*), %	7.4	8.5	11.9	15.9	
MC , %	7.1	8.5	11.7	15.6	
ECal to MC ratio	1.04	1.0	1.02	1.02	

My guess is based on independence of beam spread from energy in case of small multiple scattering/

- 1. The beam test has shown a good performance of the first 3 ECAL modules and electronics.
- 2. Software is ready for data analysis
- 3. Energy resolution is in reasonable agreement with MC. For 300 MeV this agreement is better than 5%. At smaller momentum the beam spread problem has to be and will be solved at extracted electron beam.
- 4. Work on the optimization of time resolution, MC simulation of beam test set up and cosmic ray calibration of ECAL are in progress.

