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based on

Valery Lyubovitskij and Ivan Schmidt, Phys. Rev. D102 (2020) 034011

Gluon content of proton and deuteron with the Spin Physics Detector at the NICA collider, 30.09.2020

– p.1



Plan

• Motivation:

We explicitly demonstrate how to correctly define the hadronic parton distributions

(PDFs, TMDs, GPDs) in soft-wall AdS/QCD approach

• Framework (SW AdS/QCD)

• AdS/QCD = Holographic QCD - novel approach based on correspondence

between 5D theories including gravity and gauge 4D theories living on the

boundary of AdS space

• Soft-wall AdS/QCD based on the use of a quadratic dilaton field, providing

confinement and breaking of conformal and chiral symmetries

• Advantages in study of hadron structure

• Mass spectrum of hadrons and exotic states (Regge behavior)

• Power behavior of hadron FF at large Q2 and parton distributions at large x

consistent with quark counting rules, identities/inequalities

• Application: PDFs, TMDs, GPDs of quarks and gluons

• Summary
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Introduction

• 1993 ’t Hooft Holographic Principle

Information about string theory contained in some region of space can be

represented as “Hologram” (theory which lives on the boundary of that region)

• 1997-1998 Maldacena, Polyakov, Witten et al AdS/CFT correspondence

Duality of 4D conformal supersymmetric Yang-Mills and supersting theories

• Matching partition functions gives relation between parameters

Strings gs – coupling, ls – length, R – AdS radius

SU(N) YM gYM – coupling, ’t Hooft coupling λ = g2YMN

2πgs = g2
Y M

, R4

l4s
= 2 g2

Y M
N

• Symmetry arguments: Conformal group acting in boundary theory isomorphic

to SO(4, 2) – the isometry group of AdS5 space
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Holographic QCD

• ’t Hooft limit (large N at λ fixed) gYM = λ
N

≪ 1

corresponds gs ≪ 1 (tree-level perturbative string threory)

“Conformal Field side” of duality at work

• Strong coupling limit λ ≫ 1 means ls ≪ R small curvature R = − 20
R2

Supergravity limit (closed strings shrink to point-like particles)

“String Theory side” of duality at work

• AdS/CFT → AdS/QCD upon breaking conformal invariance

• AdS/QCD ≡ Holographic QCD (HQCD) – approximation to QCD:

attempt to model Hadronic Physics in terms of fields/strings living in extra

dimensions – anti-de Sitter (AdS) space

• HQCD models reproduce main features of QCD at low and high energies:

chiral symmetry, confinement, power scaling of hadron form factors

• Physical interpretation of extra 5th dimension as Scale
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Holographic QCD

• AdS metric Poincaré form

ds2 = gMN (z) dxMdxN = R2

z2

(

dxµdxµ − dz2
)

R – AdS radius

• Metric Tensor gMN (z) = ǫaM (z)ǫbN (z)ηab

• Vielbein ǫaM (z) = R
z
δaM (relates AdS and Lorentz metric)

• Manifestly scale-invariant x→ λx, z → λz.

• z – extra dimensional (holographic) coordinate;

z = 0 is UV boundary , z = ∞ is IR boundary

• Five Dimensions: L = Length, W = Width, H = Height, T = Time, S = Scale

– p.5



Holographic QCD

• Action for scalar field

SΦ =
1

2

∫

ddxdz
√
g e−ϕ(z)

(

∂MΦ(x, z)∂MΦ(x, z)−m2 Φ2(x, z)

)

• Dilaton field ϕ(z) = κ2z2

• g = |detgMN |

• m – 5d mass, m2R2 = ∆(∆− 4), ∆ = 3 conformal dimension

• Kaluza-Klein (KK) expansion Φ(x, z) =
∑

n
φn(x)Φn(z)

• Tower of KK modes φn(x) dual to 4-dimensional fields describing hadrons

• Bulk profiles Φn(z) dual to hadronic wave functions
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Holographic QCD

• Use −∂µ∂µφn(x) =M2
nφn(x)

• Substitute Φn(z) =

(

R
z

)1−d

φn(z)

• Identify ∆ = τ = N + L (here N = 2 – number of partons in meson)

Hete τ is twist = Canonical dimension - Sum of spins

Examples: mesons τ = 2× 3/2− 2× 1/2 = 2

baryons τ = 3× 3/2− 3× 1/2 = 3

[

− d2

dz2
+

4L2 − 1

4z2
+ κ4z2 − 2κ2

]

φn(z) =M2
nφn(z)

• Solutions:

φnL(z) = φn,τ−2(z) =
√

2Γ(n+1)
Γ(n+L+1)

κL+1 zL+1/2 e−κ
2z2/2 LLn(κ

2z2)

• M2
nL = 4κ2

(

n+ L
2

)

= 4κ2
(

n+ τ
2
− 1

)

• Massless pion M2
π = 0 for n = L = 0 Brodsky, Téramond
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Holographic QCD

• Extension to AdS fermions (baryons)

Sψ =
∫

ddxdz
√
g Ψ̄(x, z)

(

6D − µ− ϕ(z)/R

)

Ψ(x, z)

• Field decomposition (left/right) and KK expansion

Ψ(x, z) = ΨL(x, z) + ΨR(x, z) ΨL/R = 1∓γ5

2
Ψ

ΨL/R(x, z) =
∑

n
Ψn
L/R

(x) Fn
L/R

(z)

• EOM
[

−∂2z + κ4z2 + 2κ2
(

µR∓ 1
2

)

+
µR(µR±1)

z2

]

Fn
L/R

(z) =M2
n F

n
L/R

(z)

Solutions (for d = 4 and µR = L+ 3/2)

• Bulk profiles

FnL (z) =
√

2Γ(n+1)
Γ(n+L+3)

κL+3 zL+9/2 e−κ
2z2/2 LL+2

n (κ2z2)

FnR(z) =
√

2Γ(n+1)
Γ(n+L+2)

κL+2 zL+7/2 e−κ
2z2/2 LL+1

n (κ2z2)

• Mass spectrum: M2
nL = 4κ2

(

n+ L+ 2
)
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Holographic QCD

• Extension to higher-spin AdS boson (mesons)

Vasilev, Buchbinder, Metzaev, Pashnev, . . .

Fields Φ → ΦM1M2···MJ

5d mass m2R2 → m2
JR

2 = (∆− J)(∆ + J − 4)

Dilaton potential

UJ (z) =
z2

R2

(

ϕ′′(z) +
1 + 2J − d

z
ϕ′(z)

)

Solutions

• φnL(z) =
√

2Γ(n+1)
Γ(n+L)

κL+1 zL+1/2 e−κ
2z2/2 LLn(κ

2z2)

• M2
nLJ = 4κ2

(

n+ L+J
2

)

→ 4κ2
(

n+ J
)

at large J
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Introduction

• Scattering problem for AdS field gives information about propagation of external

field from z to the boundary z = 0 — bulk-to-boundary propagator Φext(q, z)

[Fourier-trasform of AdS field Φext(x, z)]:

Φext(q, z) =
∫

ddxe−iqx Φext(x, z)

• Vector field as example

∂z

(

e−ϕ(z)

z
∂zV (q, z)

)

+ q2 e
−ϕ(z)

z
V (q, z) = 0 .

V (Q, z) = Γ

(

1 + Q2

4κ2

)

U

(

Q2

4κ2 , 0, κ
2z2

)

Consistent with GI, fulfills UV and IR boundary conditions :

V (Q, 0) = 1 , V (Q,∞) = 0

• Hadron form factors

Fτ (Q
2) = 〈φτ |V̂ (Q)|φτ 〉 =

∞
∫

0

dz φ2τ (z)V (Q, z) =
Γ(τ) Γ(a+ 1)

Γ(a+ τ)

is implemented by a nontrivial dependence of AdS fields on 5-th coordinate
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Introduction

• Power scaling at large Q2

Fτ (Q
2) ∼ 1

(Q2)τ−1

Quark counting rules: Matveev-Muradyan-Tavhelidze-Brodsky-Farrar 1973

Pion :
1

Q2

Nucleon(Dirac) :
1

Q4

Nucleon(Pauli) :
1

Q6

Deuteron(Charge) :
1

Q10

– p.11



Mesons: pion form factor

•
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LFWFs motivated by holographic QCD

• Matching matrix elements (e.g. form factors) in HQCD and LF QCD

• Drell-Yan-West formula

Fτ (Q
2) =

1
∫

0

dx

∫

d2k⊥

16π3
ψ†
τ (x,k

′
⊥)ψτ (x,k⊥) ,

where ψ(x,k⊥) ≡ ψ(x,k⊥;µ0), k′
⊥ = k⊥ + (1− x)q⊥, and Q2 = q2

⊥

• HQCD

Fτ (Q
2) =

∞
∫

0

dz V (Q, z)ϕ2
τ (z) =

Γ( Q
2

4κ2 + 1)Γ(τ)

Γ( Q
2

4κ2 + τ)
.

• Result for effective LFWF at the initial scale µ0

ψτ (x,k⊥) =
√
τ − 1

4π

κ

√

log(1/x) (1− x)
τ−4
2 exp

[

−
k2
⊥

2κ2
log(1/x)

(1− x)2

]
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Electromagnetic stucture of nucleons

Scale parameter κ = 383 MeV

Mass and electromagnetic properties of nucleons

Quantity Our results Data

mp (GeV) 0.93827 0.93827

µp (in n.m.) 2.793 2.793

µn (in n.m.) -1.913 -1.913

rpE (fm) 0.840 0.8768 ± 0.0069

〈r2E〉n (fm2) -0.117 -0.1161 ± 0.0022

rpM (fm) 0.785 0.777 ± 0.013 ± 0.010

rnM (fm) 0.792 0.862+0.009
−0.008

rA (fm) 0.667 0.67±0.01
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Electromagnetic stucture of nucleons

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

Q2 HGeV2L

Q
4

F
1

u
HQ

2
L
HG

eV
4
L

– p.15



Electromagnetic stucture of nucleons

0 5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

0.25

Q2 HGeV2L

Q
4

F
1

d
HQ

2
L
HG

eV
4
L

– p.16



Electromagnetic stucture of nucleons
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Electromagnetic stucture of nucleons
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Electromagnetic stucture of nucleons
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Electromagnetic stucture of nucleons
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Electromagnetic stucture of nucleons
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Electromagnetic stucture of nucleons
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Electromagnetic stucture of nucleons
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Electromagnetic stucture of nucleons
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Electromagnetic stucture of nucleons
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Electromagnetic stucture of nucleons
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Electromagnetic stucture of Roper N(1440) with JP = 1
2

+
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Parton Distrubutions of Quarks

• Relation of quark PDF in nucleon qv(x) at large x with the scaling of the proton

Dirac FF F p1 (Q
2) ∼ 1/(Q2)(p+1)/2 at large Q2

• Parameter p is related to the number of constituents in the proton (or twist τ ) as

p = 2τ − 3 [Drell-Yan (1869), Blankenbecler-Brodsky (1974)]

• pQCD prediction for GPDs [Yuan (2003)] at arge x and finite Q2:

Hπ
q (x,Q

2) ∼ (1− x)2 , HN
q (x,Q2) ∼ (1− x)3 , ENq (x,Q2) ∼ (1− x)5

• pQCD for pion PDF qπ(x) ∼ (1− x)2 at large x was supported by the updated

analysis of the E615 data [Convay et al (1989)] on the cross section of the DY

process π−N → µ+µ−X, including NLL threshold resummation effects

[Aicher-Schafer-Vogelsang (2010)]:

qπ(x) ∼ (1− x)2.03 at the initial scale µ0 = 0.63 GeV
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Parton Distrubutions of Quarks

• In Refs. Brodsky-Teramond PRD77 (2008) 056007,

Gutsche-Lyubovitskij-Vega-Schmidt PRD83 (2011) 036001, PRD83 (2012)

076003 integral representation for hadronic FF with twist τ has been derived.

• It can be written in closed form as the beta function B(α, β)

Fτ (Q
2) =

1
∫

0

dy (τ − 1) (1− y)τ−2 ya = (τ − 1)B(τ − 1, a+ 1)

• Using identification of the y variable with the light-cone momentum fraction x both

PDFs qτ (x) and GPDs Hτ (x,Q2) have been extracted

qτ (x) = (τ − 1) (1− x)τ−2 , Hτ (x,Q
2) = qτ (x)x

a

• Such x dependence of PDF and GPD contradicts model-independent results: the

DY inclusive counting rule for qτ (x) at x→ 1 and the prediction of pQCD for GPDs
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Parton Distrubutions of Quarks

• First noticed (Lyubovitskij, LC 2013, FBS55 (2014) 447) that the interpretation of

the variable y in the integral representation as LC variable is not truly correct and

that one can think about a generalized light-cone variable y(x)

• One can obtain power behavior of PDFs and GPDs at large x consistent with QCD

provided that an appropriate choice of x dependence of y(x) is made

• Simplest choice the function y(x) was found as

yN (x) = exp
[

− log(1/x)(1− x)2/(N−1)
]

leading to the correct large-x scaling of PDFs and GPDs in mesons

qMτ (x) ∼ HM
τ (x,Q2) ∼ (1− x)2τ−2 , at N = 2τ − 2

and in baryons

qBτ (x) ∼ HB
τ (x,Q2) ∼ (1− x)2τ−3 , at N = 2τ − 3

yτ (x) obeys the boundary conditions yτ (0) = 0 and yτ (1) = 1
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Parton Distrubutions of Quarks

• Similar idea was recently considered in LFHQCD [Brodsky, Teramond et al,

PRL120 (2018) 182001, hep-ph/2004.07756]:

Fτ (Q
2) =

1

Nτ

1
∫

0

dxw′(x) [w(x)]Q
2/4λ−1/2 [1− w(x)]τ−2

• Both mathematical extensions considered by two groups (Lyubovitskij et al. and

Brodsky et al.) are equivalent upon substitution y(x) = w(x).

• Difference: LFQCD included extra power −1/2 in the [w(x)]Q
2/4λ−1/2, while in

SW AdS/QCD the factor is [w(x)]Q
2/4λ

• Slightly different analytical expressions for the hadronic form factors but with the

same asymptotics:

AdS/QCD : Fτ (Q
2) ∼ B(τ − 1, 1 +Q2/4λ) ∼ 1

(Q2)τ−1

LFQCD : Fτ (Q
2) ∼ B(τ − 1, 1/2 +Q2/4λ) ∼ 1

(Q2)τ−1
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Parton Distrubutions of Quarks

• Start with the hadronic WF normalization condition (integral over z)

1 =

1
∫

0

dz φ2τ (z)

where

φτ (z) =

√

2

Γ(τ − 1)
κτ−1 zτ−3/2 e−κ

2z2/2

is the AdS bulk profile function (for simplicity we restrict here to the bosonic case

and extension on fermion case is straightforward)

• Next we use the integral representation for unity

1 = −eκ2z2
1

∫

0

d

[

fτ (x) e
−κ2z2/(1−x)2

]

= eκ
2z2

1
∫

0

dx

[

2fτ (x)κ2z2

(1− x)3
− f ′τ (x)

]

e−κ
2z2/(1−x)2 , fτ (0) = 1
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Parton Distrubutions of Quarks

• Functions fτ (x) and yτ (x) are related as:
(

1− yτ (x)
)τ−1

= fτ (x) (1− x)2(τ−1)

or

yτ (x) = 1−
[

fτ (x)
] 1

τ−1
(1− x)2 .

• We remind that at x = 0 the functions yτ (x) and fτ (x) obey the boundary

conditions yτ (0) = 0 and fτ (0) = 1. At x = 1 function fτ is finite and its value

depends on the specific choice of twist τ (see below), while yτ (1) = 1 is

independent on twist.

• After integration over the variable z we get

1 =

1
∫

0

dx (1− x)2τ−3

[

2fτ (x)(τ − 1)− f ′τ (x)(1− x)

]

.

• Here and in the following the superscript (′) means derivative with respect to x
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Parton Distrubutions of Quarks

• Using a general definition for the hadronic PDF qτ (x), in the form of the integral

representation (first moment) over x

1 =

1
∫

0

dx qτ (x)

we get:

qτ (x) = (1− x)2τ−3

[

2fτ (x)(τ − 1)− f ′τ (x)(1− x)

]

=

[

−fτ (x)(1− x)2τ−2

]′

.

• We require that the hadronic PDF qτ (x) must have the correct scaling at large x

and this behavior is governed by the profile function fτ (x).
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Pion PDF

• Pion PDF at leading twist τ = 2:

qπ(x) = (1− x)2
[

2fπ(x)

1− x
− f ′π(x)

]

= [−fπ(x)(1− x)2]′

• Following pQCD (ASV2010) we consider parametrization at µ0 = 0.63 GeV

qπ(x, µ0) = Nπx
α−1 (1− x)β (1 + γxδ) ,

where Nπ - normalization constant, α = 0.70, β = 2.03, γ = 13.8, δ = 2

• In JPG42 (2015) 095005 we derived LF wave function which produces this PDF.

Now we fix profile function fπ(x) matching our result to pQCD

• Restricting to leading twist and β ≃ 2 in (pQCD result) and using boundary

condition fπ(0) = 1 we fix fπ(x):

fπ(x)(1− x)2 = 1−Nπ x
α

[

1

α
− 2x

α+ 1
+

x2

α+ 2
+ γxδ

(

1

α+ δ
− 2x

α+ δ + 1
+

x2

α+ δ + 2

)]

.

• fπ obeys the boundary conditions fπ(0) = 1 and fπ(1) = 0.

At large x we have fπ(x) ∼ (1− x) and qπ(x) ∼ (1− x)2
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Pion PDF

• Relation of fπ(x) with yπ(x) ≡ y2(x) is

yπ(x) = 1− fπ(x)(1− x)2 ,

which for large x due to fπ(x) ∼ (1− x) simplifies to

yπ(x) = 1− (1− x)3 = x (3− 3x+ x2) .

In PRD86 (2012) 036007 we proposed a formalism for inclusion of high-Fock

states in SW AdS/QCD. In case of PDF it is given by the sum:

qπ(x) =
∑

τ=2,4,...

cτ qτ (x) ,

where cτ - mixing coefficients defining the partial contributions to the pion PDF,

from specific twists τ = 2, 4, . . ., which obey the normalization condition:

1 =

1
∫

0

dx qπ(x) =
∑

τ=2,4,...

cτ

1
∫

0

dx qτ (x) =
∑

τ=2,4,...

cτ .

– p.36



Nucleon PDFs

• In nucleon case: two holographic functions dual to its right- (fRτ ) and left-chirality

(fLτ ) wave functions

• Normalization conditions for u and d quark WF, equivalent to the normalization

conditions for their valence PDFs [uv(x) and dv(x)], read

u− quark : 2 =

1
∫

0

dxuv(x) =

∞
∫

0

dz

[

2Φ+(z) + ηu ∂z
[

zΦ−(z)
]

]

,

d− quark : 1 =

1
∫

0

dx dv(x) =

∞
∫

0

dz

[

Φ+(z) + ηd ∂z
[

zΦ−(z)
]

]

where

Φ± =
1

2

[

(

fRτ

)2
±

(

fLτ

)2
]

,

are the combinations of right and left holographic wave functions, ηu = 2ηp + ηn

and ηd = 2ηn + ηp are the linear combinations of the nucleon couplings with

vector field related to nucleon anomalous magnetic moments kN and fixed as:

ηN = kNκ/(2MN

√
2), where MN is the nucleon mass
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Nucleon PDFs

• Contribution of “nonminimal” terms vanish in the normalization condition for wave

functions and PDFs due gauge invariance, but they contribute to the

x-dependence of PDFs. “Nonminimal contributions” to the quark PDFs are

sufficient to violate the symmetry condition uv(x)/dv(x) = 2, which occurs at

ηp = ηn = 0

• For leading twist τ = 3, the results for uv(x) and dv(x) read

uv(x) =

[

−fu(x)(1− x)4
(

1 + 2ηu + (1− x)2(1− 4ηu) + 2ηu(1− x)4
)

]′

dv(x) =

[

−fd(x)(1− x)4
(1

2
+ 2ηd + (1− x)2

(1

2
− 4ηd

)

+ 2ηd(1− x)4
)

]′

At large x both PDFs scale as (1− x)3, as dictated by the counting rules, when

the fu(x) and fd(x) go to constants independent on x

• Taylor expansion for fq(x), q = u, d has the generic form

fq(x) =
∑

n

cn(1− x)n ,

with
∑

n
cn = 1, due to the boundary condition fq(0) = 1
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Nucleon PDFs

• World data analysis (e.g., MSTW 2008) supports the (1− x)3 scaling of the uv ,

while the extracted dv has softer behavior (1− x)5. Other groups give either

similar fits or softer behavior of the d quark PDF, such as e.g.

(1− x)4.47±0.55 (Alekhin et al, 2017), or introduce into the d quark PDF a

nontrivial polynomial depending on
√
x (CTEQ Coll., Hou et al, 2019).

• We can resolve this puzzle. The solution is based on a suppression of (1− x)3

term in dv , which can occur when the following constraint on the ηd coupling holds:

1

2
+ 2ηd = 0 .

• From the latter condition it follows that the dilaton scale parameter κ is related to

the nucleon mass as κ = 0.348MN = 326 MeV, which is very close to the value

κ = 350 MeV used in our calculations.

• Adopting above condition and restricting to the leading order in the (1− x)

expansion, we get the following expressions for the quark PDFs in the nucleon:

uv(x) =
[

− fu(x)(1− x)4
]′
, dv(x) =

[

− fd(x)(1− x)6
]′
.
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Nucleon PDFs

• Now we fix the u and d profile functions fu(x) and fd(x), using predictions for the

valence PDFs uv(x) and dv(x) extracted from world data analysis. As an

example, we use the results of the MSTW 2008 LO global analysis:

uv(x, µ0) = Au x
αu−1 (1− x)βu (1 + ǫu

√
x+ γux) ,

dv(x, µ0) = Ad x
αd−1 (1− x)βd (1 + ǫd

√
x+ γdx) ,

where µ0 = 1 GeV is the initial scale. The normalization constants Aq and the

constants αq , βq , ǫq , γq were fixed as

Au = 1.4335 , Ad = 5.0903 ,

αu = 0.45232 , αd = 0.71978 ,

βu = 3.0409 ≃ 3 , βd = 5.1244 ≃ 5 ,

ǫu = −2.3737 , ǫd = −4.3654 ,

γu = 8.9924 , γd = 7.4730 .
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Nucleon PDFs

• Solving the differential equations for profile functions fq(x) with the boundary

condition fq(0) = 1 and using βu = 2, βd = 5 we get:

fu(x) (1− x)4 = 1−Aux
αu

[

Bu(x, 0) + ǫu
√
xBu(x, 1/2) + γuxBu(x, 1)

]

,

fd(x) (1− x)6 = 1−Adx
αd

[

Bd(x, 0) + ǫd
√
xDd(x, 1/2) + γdxBd(x, 1)

]

,

where

Bu(x, n) =

3
∑

k=0

Ck3 (−x)k
δu + n+ k

, Bd(x, n) =

5
∑

k=0

Ck5 (−x)k
δd + n+ k

Here Ckm = m!
k!(m−k)!

are the binomial coefficients

• As in π case we derive relations between nucleon functions yq(x) and fq(x):

yu(x) = 1−
√

fu(x) (1− x)2 , yd(x) = 1−
√

fd(x) (1− x)3
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Nucleon PDFs

• For large x→ 1 the expressions for fq(x) and yq(x) are simplified:

fu(x) = fd(x) = 1 ,

yu(x) = 1− (1− x)2 = x(2− x) ,

yd(x) = 1− (1− x)3 = x(3− 3x+ x2)

It is clear that in this limit quark PDFs in nucleon obey correct large x scaling:

uv(x) = 8 (1− x)3 , dv(x) = 6 (1− x)5

• We use the MSTW 2008 LO global analysis as an example of application of our

framework. We can choose any other and match the profile functions fq

accordingly. The universality of our approach is that the profile functions fq appear

in other parton distributions like TMDs and GPDs. Therefore, as soon as the

profile functions fq are fixed from PDFs, one can have predictions for the other

parton densities.
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Nucleon PDFs

• Now we turn to a discussion of the magnetization PDFs in nucleons Euv (x) and

Edv (x). The idea of their derivation is similar to the case of the charged PDFs

uv(x) and dv(x). We start with expressions for the contribution to the anomalous

magnetic moments kq of u and d quarks in soft-wall AdS/QCD model, given as

integrals over left- and right-chirality nucleon wave functions with specific twist τ :

kqτ = 2MNηq

∞
∫

0

dz z φLτ (z)φ
R
τ (z) =

2MN

κ
ηq

√
τ − 1 .

• Next we use integral representation for unity. After integration over z we get the

magnetization PDFs in nucleon for leading twist τ = 3:

Eqv (x) = kq
[

− fq(x) (1− x)6
]′
.

In principle, the fq(x) profile functions can be different in charged and

magnetization PDFs. In the case when they are the same we derive the following

relation:

Edv (x)/dv(x) = 4ηdMN/κ
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TMDs

• TMD arise in SW AdS/QCD by analogy with PDF, using generalized integral

representation for unity, including integration over x and k⊥ variables:

1 = −eκ2z2
1

∫

0

d

[

fτ (x)e
−κ2z2/(1−x)2

] ∫

d2k⊥
Dτ (x)

πκ2
e−k

2
⊥
Dτ (x)/κ2

=
eκ

2z2

πκ2

1
∫

0

dx

∫

d2k⊥

[

2fτ (x)κ2z2

(1− x)3
− f ′τ (x)

]

Dτ (x)e
−κ2z2/(1−x)2e−k

2
⊥
Dτ (x)/κ2

where Dτ (x) is the factor derived in (Gutsche, Lyubovitskij, Schmidt, EPJC77

(2016) 86), which was fixed from data on the nucleon electromagnetic form factors

• Purpose of Dτ (x) is to include a running scale in TMD, i.e. scale parameter, which

accompanies k⊥ dependence in TMDs. In our case the running scale parameter

is Λτ (x) = κ/
√

Dτ (x)

• Such choice of Λτ (x) is a generalization of the Gaussian ansatz for TMD with

constant scale Λ2 = 〈k2
⊥〉 in the exponential, proposed by Turin group (Anselmino

et al., PRD67 (2003) 074010): F (x,k⊥) = F (x) e−k
2
⊥
/〈k2

⊥
〉
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TMDs

• This Gaussian ansatz is simple and very useful in practical calculations and

analysis of data. However, it is known (see e.g., Bacchetta et el., PRD100 (2019)

014018), that it presents difficulties in the description of data on DY processes in

some kinematical regions (e.g. at Q⊥ ≤ Q)

• Therefore, the ansatz for the TMD can be crucially checked. In this vein, one can

mention results of AdS/QCD and light-front quark models motivated by AdS/QCD

where it was shown that the hadronic light-front wave functions, PDFs, and TMDs

contain scale parameter depending on the light-cone variable x, i.e. they can be

considered as x-dependent scale quantities

• We found that x-dependent scale is crucial for a successful description of data on

electromagnetic form factors of nucleons and electroexcitation of nucleon

resonances. Also we can see below that our result for the unpolarazed quark TMD

in nucleon will contain two terms multiplied with a Gaussian: constant term and

term proportional to k2
⊥. It is consistent with the form of TMD used by the Pavia

group (Bacchetta et al., JHEP 06 (2017) 081). Next we will show that function

Dτ (x) can be fixed from expression for the electromagnetic form factor and

related to functions fτ (x) and yτ (x).
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TMDs

• Using the same calculation technique as for the case of PDFs, we insert the

integral representation into the normalization condition for the holographic wave

function and integrate over the z variable. After that we arrive at the normalization

condition for the TMD Fτ (x,k⊥), from which the latter can be extracted and

expressed through PDF as:

1 =

1
∫

0

dx

∫

d2k⊥ Fτ (x,k⊥) , Fτ (x,k⊥) = qτ (x)
Dτ (x)

πκ2
e−k

2
⊥
Dτ (x)/κ2

• Also it is important to stress that from the results for generic PDFs and TMDs

derived in present paper one can set up LF quark model in analogy with our

previous analysis. In particular, the LF wave function for generic hadron with twist

τ reads:

ψ(x,k⊥) =
4π

κ

√

qτ (x)Dτ (x) exp

[

−
k2
⊥

2κ2
Dτ (x)

]

.
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TMDs

• Note that generic TMD and PDF are expressed in term of LF wave function as:

Fτ (x,k⊥) =
1

16π3
|ψ(x,k⊥)|2 , qτ (x) =

∫

d2k⊥

16π3
|ψ(x,k⊥)|2 =

∫

d2k⊥ Fτ (x,k⊥)

• As example we consider unpolarized quark TMD in nucleon fqv1 (x,k⊥). As in

case of PDF it is contributed by two wave functions φR(z) and φL(z)

• φR(z) function generates the contribution to TMD fqv1,R(x,k⊥), while the φL(z)

gives the contribution fqv1,L(x,k⊥) proportional to k2
⊥:

fqv1 (x,k⊥) = fqv1,R(x,k⊥) + fqv1,L(x,k⊥) ,

where

fqv1,R(x,k⊥) = q+v (x)
Dq(x)

2πκ2
e
−

k
2
⊥

Dq(x)

κ2 , fqv1,L(x,k⊥) = q−v (x)
k2
⊥D

2
q(x)

2πκ4
e
−

k
2
⊥

Dq(x)

κ2

Here q±v (x) = qv(x)± δqv(x), qv(x) and δqv(x) are the helicity-independent and

helicity-dependent valence quark parton distributions.
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TMDs

• As we mentioned before, the form of our expression for TMD

fqv1 (x,k⊥) =

[

q+v (x) + q−v (x)
k2
⊥Dq(x)

κ2

]

Dq(x)

2πκ2
e−k

2
⊥
Dq(x)/κ

2

is very similar to the parametrization used by Pavia group:

fa1 (x,k⊥) =
1

πg1a

1 + λk2
⊥

1 + λg1a
e−k

2
⊥
/g1a

• Using expressions for nucleon PDFs and TMDs one can set up the LF wave

functions for the nucleon following our findings:

ψ±
±q(x,k⊥) = ϕ

(1)
q (x,k⊥) , ψ±

∓q(x,k⊥) = ∓k
1 ± ik2

MN
ϕ
(2)
q (x,k⊥) ,

ϕ
(1)
q (x,k⊥) =

2π
√
2

κ

√

q+v (x)Dq(x) exp

[

−
k2
⊥

2κ2
Dq(x)

]

,

ϕ
(2)
q (x,k⊥) =

2πcq
√
2MN

κ2

√

q−v (x)Dq(x) exp

[

−
k2
⊥

2κ2
Dq(x)

]

.
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TMDs

• Here cu = 1, cd = −1, ψ
λN
λqq

(x,k⊥) are the LFWFs at the initial scale µ0 with

specific helicities for the nucleon λN = ± and for the struck quark λq = ±, where

plus and minus correspond to + 1
2

and − 1
2

, respectively. Note, in terms LF wave

functions the unpolarized quark TMD in nucleon reads (Bacchetta et al, PRD78

(2008) 074010):

fqv1 (x,k⊥) =
1

16π3

[

|ψ+
+q(x,k⊥)|2 + |ψ+

−q(x,k⊥)|2
]

=
1

16π3

[

(

ϕ
(1)
q (x,k⊥)

)2
+

k2
⊥

M2
N

(

ϕ
(2)
q (x,k⊥)

)2
]

Note q±v (x) and Eqv (x) PDFs are related as (Lyubovitskij et al., 2017):

Eqv (x) = cq

√

q+v (x) q−v (x)Dq(x) (1− x) .

The full set of the valence T -even TMDs generated by LF wave functions derived

above is listed below.
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TMDs

• Here we list the T -even TMDs of nucleon using derived LF decomposition

discussed in (Bacchetta et al., 2008) and (Lyubovitskij et al., 2017)

fqv1 (x,k⊥) ≡ hqv1T (x,k⊥) =
1

16π3

[

(

ϕ
(1)
q (x,k⊥)

)2
+

k2
⊥

M2
N

(

ϕ
(2)
q (x,k⊥)

)2
]

,

gqv1L(x,k⊥) =
1

16π3

[

(

ϕ
(1)
q (x,k⊥)

)2
−

k2
⊥

M2
N

(

ϕ
(2)
q (x,k⊥)

)2
]

,

gqv1T (x,k⊥) ≡ −h⊥qv1L (x,k⊥) =
1

8π3
ϕ
(1)
q (x,k⊥)ϕ

(2)
q (x,k⊥) ,

hqv1 (x,k⊥) ≡ hqv1T (x,k⊥) +
k2
⊥

2M2
N

h⊥qv1T (x,k⊥) =
1

16π3

(

ϕ
(1)
q (x,k⊥)

)2
,

k2
⊥

2M2
N

h⊥qv1T (x,k⊥) ≡ 1

2

[

gqv1L(x,k⊥)− fqv1 (x,k⊥)
]

≡ gqv1L(x,k⊥)− hqv1 (x,k⊥)

= −
k2
⊥

16π3M2
N

(

ϕ
(2)
q (x,k⊥)

)2
.
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TMDs

• Using our LF WF we express TMDs through the PDFs

fqv1 (x,k⊥) ≡ hqv1T (x,k⊥) = F1(x,k⊥) + F2(x,k⊥) ,

gqv1L(x,k⊥) = F1(x,k⊥)−F2(x,k⊥) ,

gqv1T (x,k⊥) ≡ −h⊥qv1L (x,k⊥) = F3(x,k⊥) ,

hqv1 (x,k⊥) = F1(x,k⊥) ,

k2
⊥

2M2
N

h⊥qv1T (x,k⊥) = −F2(x,k⊥) ,

where

F1(x,k⊥) = q+v (x)
Dq(x)

2πκ2
e
−

k
2
⊥

κ2 Dq(x) ,

F2(x,k⊥) = q−v (x)
k2
⊥D

2
q(x)

2πκ4
e
−

k
2
⊥

κ2 Dq(x) ,

F3(x,k⊥) = cq

√

4κ2

k2
⊥

F1(x,k⊥)F2(x,k⊥) =

√

q+v (x) q−v (x)
cq D

3/2
q (x)

πκ2
e
−

k
2
⊥

κ2 Dq(x)
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TMDs

• Performing the k⊥-integration over the TMDs with

TMD(x) =

∫

d2k⊥ TMD(x,k⊥) , TMD(x) =

∫

d2k⊥
k2
⊥

2M2
N

TMD(x,k⊥)

gives the identities

fqv1 (x) ≡ hqv1T (x) = qv(x) , gqv1L(x) = δqv(x) , gqv1T (x) ≡ −h⊥qv1L (x) =
Eq(x)
1− x

,

hqv1 (x) =
qv(x) + δqv(x)

2
, h⊥qv1T (x) = − qv(x)− δqv(x)

2
.

The integration over x leads to the normalization conditions

1
∫

0

dxfqv1 (x) =

1
∫

0

dxhqv1T (x) = nq ,

1
∫

0

dxgqv1L(x) = gqA ,

1
∫

0

dxhqv1 (x) = gqT

where nq is the number of u or d valence quarks in the proton, gqA is the axial

charge of a quark with flavor q = u or d, and gqT is the tensor charge. Our TMDs

satisfy all relations and inequalities found before in theoretical approaches.
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GPDs

• As we mentioned before, the nucleon GPDs were calculated for the first time in

soft-wall AdS/QCD in (Vega, Schmidt, Gutsche, Lyubovitskij, PRD83 (2011)

036011). These quantities were expressed in terms of generalized light-cone variable

yτ (x), which has direct relation to the profile function fτ (x). Function fτ (x) is

more convenient for displaying power behavior of hadronic parton distributions

(PDFs, TMDs, GPDs). In particular, for arbitrary twist τ , a generic GPD in hadron

reads

Hτ (yτ (x), Q
2) = (τ − 1) (1− yτ (x))

τ−2
[

yτ (x)
]a
, a =

Q2

4κ2
.

It can be written in more convenient form in terms of PDF:

Hτ (x,Q
2) = qτ (x)

[

yτ (x)
]a

= qτ (x) exp
(

− a log
[

1/yτ (x)
])

,

where the PDF qτ (x) and light-cone function yτ (x) are expressed through profile

function fτ (x) according formulas discussed before.

Next we constrain function Dτ (x) and relate it to functions yτ (x) and fτ (x)

matching the expression for the hadronic form factors in two approaches —

soft-wall AdS/QCD and LF QCD
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GPDs

• The LF QCD result for the hadron form factor is given by the Drell-Yan-West

formula

Fτ (Q
2) =

1
∫

0

dx

∫

d2k⊥

16π3
ψ†
τ (x,k

′
⊥)ψτ (x,k⊥) ,

where ψ(x,k⊥) ≡ ψ(x,k⊥;µ0) is wave function derived in DYW formula,

k′
⊥ = k⊥ + (1− x)q⊥, and Q2 = q2

⊥.

We get:

Fτ (Q
2) =

1
∫

0

dx qτ (x) exp
[

− a log[1/yτ (x)]
]

=

1
∫

0

dx qτ (x) exp
[

− aDτ (x)(1− x)2
]

or

Dτ (x) =
1

(1− x)2
log[1/yτ (x)] =

1

(1− x)2
log

[

1−
(

fτ (x)
) 1

τ−1
(1− x)2

]−1

.
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GPDs

• For large x function Dτ (x) behaves as

Dτ (x) =
(

fτ (x)
) 1

τ−1
,

where fπ(x) = 1− x, fu(x) = fd(x) = 1 and therefore Dπ(x) = 1− x,

Du(x) = Dd(x) = 1. It leads to the following scaling of the TMDs at large x:

fπ1 (x,k⊥) = qπ(x) (1− x)
e−k

2
⊥
(1−x)/κ2

πκ2

for pion,

fqv1 (x,k⊥) =

[

q+v (x) + q−v (x)
k2
⊥

κ2

]

e−k
2
⊥
/κ2

2πκ2

for nucleon.
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GPDs

• Now we consider specific cases for GPDs. In the pion case we have τ = 2 and

yπ(x) = 1− fπ(x) (1− x)2, where the pion profile function fπ(x) is fixed from

pion PDF

• Pion PDF qπ(x) is fixed from data. Therefore, we give the pion GPD prediction at

the initial scale µ0 = 1 GeV in terms of the pion PDF, or more precisely in terms of

constants parametrizing PDF (Nπ , α, β, γ, δ) fixed in by

(Aicher-Schafer-Vogelsang, 2010)

• At large x the profile functions fπ(x) → (1− x) and yπ(x) → 1, and the scaling of

our result for the pion GPD (1− x)2 is consistent with the pQCD prediction (Yuan,

2003): it coincides with the leading-order result for the pion PDF and is

independent on Q2:

Hπ(x,Q
2) = qπ(x) = 3 (1− x)2
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GPDs

• In the nucleon case we have τ = 3, yu(x) = 1−
√

fu(x) (1− x)2, and

yd(x) = 1−
√

fd(x) (1− x)3. The quark profile functions fu(x) and fd(x) are

fixed from the corresponding nucleon PDFs extracted from global data analysis at

the initial scale µ0 = 1 GeV (MSTW 2009). The four (charged and magnetization)

nucleon GPDs at the initial scale µ0 = 1 GeV are defined as:

Hq
v(x,Q

2) = qv(x)
[

yq(x)
]a
, Eqv (x,Q2) = Eqv (x)

[

yq(x)
]a
.

Finally we consider the limit of large x. In this case the profile functions fq(x) and

functions yq(x) approach 1: fu(x) = fd(x) = 1 and yu(x) = yd(x) = 1. The

scaling of the nucleon charge and magnetization GPDs are also (as in case of

pion) consistent with the pQCD predictions:

Hu
v (x,Q

2) = uv(x) = 8 (1− x)3 , Eqv (x,Q2) = Eqv (x) = 6 Eqv (1− x)5 .

In case ofd quark charge GPD Hd
v(x,Q

2) we have two possibilities at large x. In

general it scales as (1− x)3 in agreement with pQCD. On the other hand, if we

suppress LO term (1− x)3 in the d quark PDF, then dv(x) has softer (1− x)5

behavior consistent with result of world data analysis (MSTW 2009). In this vein,

we also get (1− x)5 scaling of the Hd
v(x,Q

2)

– p.57



Gluon Parton Distributions

• Unpolarized G(x) and upolarized ∆G(x) gluon PDFs in QCD (Brodsky-Schmidt):

G(x) = G+(x) +G−(x) , ∆G(x) = G+(x)−G−(x)

G+(x) = Gg↑/N↑(x) , G−(x) = Gg↓/N↑(x)

helicity-aligned and anti-aligned gluon distributions

G+(x) =
N

x
[5(1− x)4 − 4(1− x)5] , G−(x) =

N

x
(1− x)6

Hence

G(x) = 2N(1− x)4 (1/x+ 1 + x/2) , ∆G(x) = 6N(1− x)4 (1− x/6)
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Gluon Parton Distributions

• Limits

lim
x→0

∆G(x)

G(x)
= Nq x , Nq = 3 number of val. quarks

lim
x→1

G−(x)

G+(x)
=

1

5
(1− x)2

• Momentum 〈xg〉 and helicity ∆G fractions carried by intrinsic gluons in nucleon

〈xg〉 =
1

∫

0

dxxG(x) =
10

21
N , ∆G =

1
∫

0

dx∆G(x) =
7

6
N ,

∆G

〈xg〉
=

49

20

• Lattice: 〈xg〉 = 0.427± 0.092 at Q0 = 2 GeV

(Alexandrou et al., PRD101 (2020) 094513)

• Spectator Model: 〈xg〉 = 0.424± 0.009 at Q0 = 1.64 GeV

(Bacchetta et al., EPJC80 (2020) 733)
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Gluon Parton Distributions

• Start with the hadronic WF normalization condition (integral over z) 1 =
1
∫

0

dz φ2τ (z)

• Next we use the integral representation for unity

1 = − 1

〈xg〉
eκ

2z2
1

∫

0

d

[

fgτ (x) e
−κ2z2/(1−x)2

]

, fgτ (0) = 〈xg〉

• Profile function fgτ (x) is fixed from condition

[−fgτ (x)(1− x)2τ−3]′ =
1

〈xg〉
xG(x)

with boundary condition fgτ (0) = 〈xg〉. Using Brodsky-Schmidt G(x) one gets

fg(x)(1− x)6 = 〈xg〉
[

1− 21x

10

(

2− 3x+
5x2

3
− x5

3
+−x

6

7

)]

– p.60



Gluon Parton Distributions

• TMDs

fg1 (x,k⊥) =

[

G+(x) + G−(x)
k2
⊥Dq(x)

κ2

]

Dg(x)

πκ2
e−k

2
⊥
Dg(x)/κ

2

gg1L(x,k⊥) =

[

G+(x) − G−(x)
k2
⊥Dq(x)

κ2

]

Dg(x)

πκ2
e−k

2
⊥
Dg(x)/κ

2

gg1T (x,k⊥) =
√

G+(x)G−(x)
2Dq(x)

κ2
e−k

2
⊥
Dg(x)/κ

2

hg1(x,k⊥) = G+(x)G+(x)
Dq(x)

κ2
e−k

2
⊥
Dg(x)/κ

2

where Dg(x) = [fg(x)]1/3
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Gluon Parton Distributions

• All TMDs have corret connection to PDFs

fg1 (x) =

∫

d2k⊥f
g
1 (x,k⊥) = G+(x) +G−(x) = G(x) ,

gg1L(x) =

∫

d2k⊥g
g
1L(x,k⊥) = G+(x)−G−(x) = ∆G(x) ,

gg1T (x) =

∫

d2k⊥g
g
1T (x,k⊥) = 2

√

G+(x)G−(x) =
1

2

√

G2(x)−∆G2(x) ,

hg1(x) =

∫

d2k⊥h
g
1(x,k⊥) = G+(x) =

1

2
(G(x)−∆G(x))

• GPDs

Hf (x,Q
2) = f(x)

[

yg(x)
]Q2/(4κ2)

, yg(x) = 1− fg(x)(1− x)4
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Summary

• It was explicitly demonstrated how to correctly define the hadronic parton

distributions (PDFs, TMDs, and GPDs) in the soft-wall AdS/QCD approach based

on the use of quadratic dilaton.

• The large x behavior of PDFs and GPDs is consistent with model-independent

counting rules. For the first time, we derive results for the large x behavior of

TMDs.

• All parton distributions are defined in terms of profile functions fτ (x) depending on

the light-cone coordinate.

• The functions fτ (x) are related to the PDFs and obey the boundary condition

fτ (0) = 1 (quarks) and fgτ (x) = 〈xg〉 (gluon).

• Profile functions are fixed from data analysis on PDFs and can then be tested in

the phenomenology of TMDs and GPDs.
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