An overview of COMPASS Δg results

M. Stolarski LIP

On behalf of the COMPASS Collaboration

30-IX-2020

Overview

- COMPASS
- Nucleon spin polarisation puzzle
- COMPASS $\Delta g/(g)$ results from:
 - NLO $g_1^{p,d}$ fit
 - Open charm, (LO and NLO)
 - High- p_T , low Q^2 events (LO and NLO)
 - High- p_T , high Q^2 events (LO)

COMPASS at CERN

COMPASS Spectrometer

COLLABORATION

- about 210 physicists
- 27 institutes

DETECTOR

- two stage spectrometer
- 60 m length
- about 350 detector planes

POLARISED TARGET

- ⁶LiD, (NH₃) target
- 2-3 cells (120 cm total length)
- $\bullet~\pm~50\%$ (85%) polarisation
- pol. reversal every 8h-24h

POLARISED BEAM

- \bullet μ^+ at 160 GeV/c
- polarisation –80 %

FEATURES

- angular acceptance: ± 70 mrad (± 180 mrad from 2006)
- track reconstruction:p > 0.5 GeV/c
- identification h, e, μ : calorimeters and muon filters
- identification: π , K, p (RICH) p > 3, 9, 18 GeV/c respectively

Motivation a'la 1990-2014

- Spin of the proton $(S_p = 1/2\hbar)$ can be decomposed as:
 - \bullet $\Delta\Sigma$ quark contribution to the nucleon spin
 - ΔG gluon contribution
 - $\Delta L_a, \Delta L_g$ orbital momentum of quarks and gluons
- $S_p = 1/2\hbar = 1/2\Delta\Sigma + \Delta G + \Delta L_q + \Delta L_g$
- In the simplest QPM model: $S_p = 1/2\Delta\Sigma$
- The direct measurement: $\Delta\Sigma \approx 0.3$
- How much is then ΔG?
- So far (NLO) QCD fits of DIS data **do not** constrain ΔG
- ullet Possible direct measurement of ΔG in photon-gluon fusion
 - asymmetries in open-charm production
 - asymmetries for events with high transverse momentum hadrons
- ullet Early RHIC results used in QCD fits suggested that ΔG changes sign and in overall was compatible with zero!
- Only later RHIC results suggested that ΔG is positive in the measured x_g range

Δg from g_1 Scaling Violations

M. Stolarski (LIP) SPD NICA 2020 30-IX-2020 6

Δg from g_1 Scaling Violations

- Study of scaling violation of g1 function is the most model independent way to obtain $\Delta g(x)$
- It works extremely well for unpolarised g distribution, due to presence of HERA collider data, $\sqrt{s} = 318 \text{ GeV}/c^2$, data cover up to 5 decades in Q^2
- In case of polarised experiments, we lack of high energy collider data and thus access to high Q^2
- In addition due to factors like ,depolarisation factor, beam and target polarisation, target dilution factor the figure of merit is poor

M. Stolarski (LIP) SPD NICA 2020 30-IX-2020

World Data on g_1^p and g_1^d

COMPASS NLO Fit to World Data on g_1^p and g_1^d

- PLB **753** (2016) 18
- Dark bands stand for statistical uncertainties, lighter one for systematic ones
- ullet The value of Δg is not constrained
- Unconstrained Δg has significant impact on uncertainty of extracted $\Delta \Sigma$, i.e. $\Delta \Sigma \in [0.26, 0.36]$ @ $Q^2 = 3$ (GeV/c)² in \overline{MS} -scheme

Open Charm Analysis

Open Charm Analysis

Considerations:

- ullet Formally it is/was considered golden channel to extract $\Delta g/g$ in COMPASS
- \bullet Presence of D^0 meson is a smoking gun of PGF process
- ullet At LO there is no background from other processes to D^0 production
- $\Delta g/g = \frac{1}{\langle a_{LL} \rangle} A_{LL}^{D^0}$
- At low x, where COMPASS observes D⁰ there is no contamination of intrinsic charm events.
- At low x, Q^2 is below 1 $(\text{GeV}/c)^2$, however the hard scale is given by the mass of heavy quarks, $\mu^2 \approx 4m_c^2$.

M. Stolarski (LIP) SPD NICA 2020 30-IX-2020

Analysis Method

- Five channels of were studied
 - $D^0 \to K\pi$
 - $D^* \to D^0 \pi_{\epsilon} \to K \pi \pi_{\epsilon}$
 - $D^* \to D^0 \pi_{\epsilon} \to K3\pi\pi_{\epsilon}$
 - $D^* \to D^0 \pi_s \to K_{sub~threshold} \pi \pi_s$
 - $D^* \to D^0 \pi_{\epsilon} \to K \pi \pi^0 \pi_{\epsilon}$
- RICH used to identify particles of D^0 decay (usually kaon)
- COMPASS target is dense and long it is impossible to detect secondary vertex of D^0 decay
- We used Neural Network approach to better select D^0 candidates, wrong charge combinations were used as background
- The partonic cross section all was parametrised on the event by event basis by Neural Network
- For LO, event-by-event weighting procedure was used to optimise statistical uncertainties

M. Stolarski (LIP) SPD NICA 2020 30-IX-2020

D⁰ Spectra in Various Channels

D⁰ Spectra for Different NN Responses

NN is able to select phase-space region where purity of the signal is higher than average

NLO $\Delta g/g$ Analysis

• At higher order D^0 can be produced not only in PGF process e.g.

- $\Delta g/g = \frac{D}{\langle a_{LL}^{NLO} \rangle} A_{LL}^{\gamma N} A_{corr}$
- ullet It turned out that a_{LL}^{NLO} is unexpectedly very different from a_{LL}^{LO}
- ullet The reason is that with COMPASS limited centre of mass energy D^0 production is near the energy threshold
- The difference is only visible when COMPASS acceptance is taken into account!
- Large change in x_g between LO and NLO is also seen

Results - $\Delta g/g$ from Open Charm

- PRD **87** (2013) 052018
- LO analysis:
 - $\Delta g/g = -0.06 \pm 0.21 \pm 0.08$
 - x_g range 0.06–0.22, $\langle x_g \rangle = 0.11$, $\mu^2 \approx 13 \; (\text{GeV}/c)^2$
- NLO analysis:
 - $\Delta g/g = -0.13 \pm 0.15 \pm 0.15$
 - x_g range 0.12–0.33, $\langle x_g \rangle = 0.20$, $\mu^2 \approx 13 \; (\text{GeV}/c)^2$

p_T of D^0	a_{LL}^{LO}/D	a_{LL}^{NLO}/D
0.0-0.3	+0.70	-0.13
0.3-0.7	+0.51	-0.24
0.7-1.0	+0.27	-0.42
1.0-1.5	+0.02	-0.57
> 1.5	-0.24	-0.68

- Due to large statistical uncertainties a great variation in a_{LL} values between LO and NLO does not change much $\Delta g/g$ results
- However, if one generates PGF asymmetry according to NLO a_{LL} and repeats analysis in LO one obtains $\Delta g^{extracted} = -0.2\Delta g^{assumed}$!

Δg from Hadron Production at High- p_T , $Q^2 < 1$

M. Stolarski (LIP) SPD NICA 2020 30-IX-2020 1

Δg from Hadron Production at High- p_T , $Q^2 < 1$

- The p_T of hadrons produced in Leading QCD Process is small
- Higher order processes like PGF and QCDC are characterised by larger p_T
- Selecting hadrons with high p_T one enhances contamination of PGF and QCDC
- However, at low Q^2 one need to deal with the so called resolved photon events,
- COMPASS performed an analysis of such events
 - PLB 633 (2006) 25
 - $A_{II}^{\gamma N}$ are measured for High p_T events with $Q^2 < 1~({\rm GeV}/c)^2$
 - PYTHIA generator is used to estimate fraction of various processes, R_i in the selected sample and analysing power $\langle a_{LL} \rangle$
 - $\Delta g/g = 0.024 \pm 0.089 (stat.) \pm 0.057 (syst.), \langle x_g \rangle = 0.095, \ \mu^2 = 3 \ (\text{GeV}/c)^2$

M. Stolarski (LIP) SPD NICA 2020 30-IX-2020

$A_{LL}^{\mu N}$ at High p_T and Low Q^2

- It turned out that perturbative calculation can be carried out in NLO for single hadron asymmetry $A_{II}^{\mu N}$ at high- p_T and low Q^2
- Hard scale of the process is p_T^2
- There are significant calculation problems in case one would like to perform analysis with two hard scales present like p_T^2 and Q^2
- Thus the method can only be used for low Q^2 events
- The theoretical calculations, B. Jager, M. Stratmann and W. Vogelsang, Eur. Phys. J. C 44 (2005) 533. for various input parameters like $\Delta g(x)$ can be then compared with theory predictions (alternatively measured asymmetries can be used in pQCD fits)

M. Stolarski (LIP) SPD NICA 2020 19

$A_{LL}^{\mu N}$ at High p_T and Low Q^2 cont.

- Results published in PLB 753 (2016) 573
- \bullet $A_{LL}^{\mu N}$ for proton and deuteron target, left and right panel, respectively
- At the time of COMPASS publication theoretical results without threshold re-summations were available
- Clear tensions visible in certain kinematic ranges

M. Stolarski (LIP) SPD NICA 2020 30-IX-2020

Impact of Threshold Re-summation

- C. Uebler, A. Schäfer, W. Vogelsang, PRD 96 (2017) 074026
- "To have some confidence that our perturbative methods are valid, we require the hadron p_T to be at least $p_T = 1.75 \text{ GeV}/c$ "
- The polarised PDFs used in calculations correspond to PRL 113, (2014) 012001
- Better observed agreement, but much of experimental data are not used in analysis

All- p_T analysis, $Q^2 > 1$

M. Stolarski (LIP) SPD NICA 2020 30-IX-2020

The Analysis Method of High- p_T Events in the DIS Region

• Contribution from 3 processes to the observed asymmetry is assumed:

- $A_{LL}^{h}(x_{Bj}) = R_{PGF} a_{LL}^{PGF} \Delta g/g(x_G) + R_{LP} D A_1^{LP}(x_{Bj}) + R_{QCDC} a_{LL}^{QCDC} A_1^{LP}(x_C)$ where:
 - $A_1^{LP} \equiv \frac{\sum_i e_i^2 \Delta q_i}{\sum_i e_i^2 q_i}$
 - the fraction of the processes (R_i) and partonic cross-section asymmetries (a_{LL}^i) are obtained from MC and parametrised by NN
- ullet Idea: larger $p_T o ext{larger } R_{PGF} o ext{larger sensitivity to } \Delta g/g$

The Analysis Method cont.

- $\bullet \ A_{LL}^h(x_{Bj}) = R_{PGF} a_{LL}^{PGF} \Delta g/g(x_G) + R_{LP} DA_1^{LP}(x_{Bj}) + R_{QCDC} a_{LL}^{QCDC} A_1^{LP}(x_C)$
- ullet A_1^{LP} is unknown, an additional information is needed in order to extract $\Delta g/g$
- Several possibilities exists:
 - take existing polarised LO PDF (biased result and error)
 - take existing polarised NLO PDF (depends upon ΔG !, higher order)
 - use inclusive A_1^d PLB **718**, (2013) 922
 - extract A_1^{LP} simultaneously with $\Delta g/g$ EPJC **77** (2017) 209

PLB **718** (2013) 922:

EPJC 77 (2017) 209:

- The 2nd method improves statistical uncertainty by a factor of 1.6
- It allows better treatment of systematic uncertainties
- As R_i and a_{LL} are taken from MC \rightarrow good MC description of data is crucial

Data/MC and R_i NN Parametrisations

Results

- $\Delta g/g = 0.113 \pm 0.038 (stat.) \pm 0.036 (syst.)$, $\langle x_g \rangle \approx 0.10$, $\mu^2 = Q^2 = 3 (\text{GeV}/c)^2$
- Results of $\Delta g/g$ in three x_g bins were also obtained

World Results of Direct $\Delta g/g$ Extraction

M. Stolarski (LIP) SPD NICA 2020 30-IX-2020 27 / 28

Summary

- Several COMPASS results concerning Δg were presented
- ullet COMPASS obtained the world most precise results in direct extraction of $\Delta g/g$
- ullet COMPASS measurements, both direct and indirect, do agree with positive Δg
- ullet On average a bit larger Δg than in DSSV fits would better fit COMPASS data
- Sometimes surprising impact of higher order corrections was found across our analyses
- Suggestion: Work with theory colleagues right from beginning!