

Pasquale Di Nezza

In collaboration with V.Carassiti, G.Ciullo, P.Lenisa, L.Pappalardo, E.Steffens

30/09/20

Merging 3 worlds for the first time

Merging 3 worlds for the first time

Kinematics on fixed target

pp or pA collisions: 7 TeV beam on fix target

$$\sqrt{s} = \sqrt{2m_N E_p} = 115 \ GeV$$
$$-3.0 \le y_{CMS} \le 0 \ \rightarrow \ 2 \le y_{lab} \le 5$$

AA collisions: 2.76 TeV beam on fix target $\sqrt{s_{NN}} \simeq 72 \ GeV$

 $y_{CMS} = 0 \rightarrow y_{lab} = 4.3$

Kinematics on fixed target

pp or pA collisions: 7 TeV beam on fix target $\sqrt{s} = \sqrt{2m_N E_p} = 115 \ GeV$ $-3.0 \le y_{CMS} \le 0 \rightarrow 2 \le y_{lab} \le 5$

AA collisions: 2.76 TeV beam on fix target $\sqrt{s_{NN}} \simeq 72 \ GeV$ $y_{CMS} = 0 \rightarrow y_{lab} = 4.3$

Unique kinematical region

At the LHC fixed target pp, pp^t, pA, Pb-p, Pb-p^t or Pb-A collisions, one has unique kinematic conditions at the poorly explored energy of √s ~ 100 GeV

In addition the exotic region at x>1 can be accessed (Fermi motion) creating a bridge between QCD and nuclear physics

Unique kinematical region

At the LHC fixed target pp, pp^t, pA, Pb-p, Pb-p^t or Pb-A collisions, one has unique kinematic conditions at the poorly explored energy of √s ~ 100 GeV

In addition the exotic region at x>1 can be accessed (Fermi motion) creating a bridge between QCD and nuclear physics

LHCb, a single-arm forward spectrometer perfectly suited for fixed target collisions

JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022

optimised for studying particles containing c- and b-quarks

Tracking system momentum resolution $\Delta p/p = 0.5\% - 1.0\%$ (5 GeV/c - 100 GeV/c)

LHCb upgrade 2019-2020

- Collision rate at 40 MHz
- Pile-up factor $\mu \approx 5$
- Remove LO triggers (software trigger)
- Read out the full detector at 40 MHz
- Replace the entire tracking system

LHCb, a single-arm forward spectrometer perfectly suited for fixed target collisions

JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022

optimised for studying particles containing c- and b-quarks

Tracking system momentum resolution $\Delta p/p = 0.5\% - 1.0\% (5 \text{ GeV/c} - 100 \text{ GeV/c})$

LHCb is the only experiment able to run both in collider and in fixed-target mode ... simultaneously!

Simultaneous run for p-gas @ 115 GeV and pp @ 14 TeV

The two systems don't interfere each other and the reconstruction efficiencies stay unchanged

The DAQ data flow increases of 1.3% only

Why

-Advance our understanding of the large-x gluon, antiquark and heavy quark content in nucleons and nuclei
-Advance our understanding of the dynamics and spin distributions of gluons inside (un)polarised nucleons
-Study heavy-ion collisions between SPS and RHIC energies at large rapidities

Why

-Advance our understanding of the large-x gluon, antiquark and heavy quark content in nucleons and nuclei
-Advance our understanding of the dynamics and spin distributions of gluons inside (un)polarised nucleons
-Study heavy-ion collisions between SPS and RHIC energies at large rapidities

- Unique and large kinematic coverage
- High luminosity and high resolution detectors rare probes
- Proton or Heavy-Ion Beam
- Large variety of atomic gas targets: $H_2, D_2, He, N_2, O_2, Ne, Ar, Kr, Xe$
- Polarised targets: $H^{\uparrow}, D^{\uparrow}$
- Marginal impact on LHC beam and mainstream physics at current experiments

High-x physics

- Reduce the uncertainties on PDFs goes beyond the "simple" knowledge. Among others, it is a crucial ingredient for HEP measurements (even FCC) and predictions of physics processes BSM (e.g. heavy partners of the gauge bosons)
- Cosmic Ray Physics (e.g. to reduce the uncertainties on the prompt atmospheric neutrino flux)
- More insight into EMC effect

High-x physics

arXiv:1807.00603

Unique constraints on gluon nPDFs at high-x and low scales

Substantial improvement of the uncertainties

estimation with 10 fb⁻¹

Cosmic Rays and DM

UHE CR composition (strongly model dependent) is still very uncertain! Solving the **composition problem** would be important to understand the CR production mechanisms

PROSA prompt $(\nu_{\mu} + \bar{\nu}_{\mu})$ flux: QCD scale, mass and PDF uncertainties

Big uncertainties from PDF

Antiproton issue: **Dark Matter** annihilation (primary), scatter on interstellar matter (secondary)

 $\sigma = \sigma_{\bar{p}}^{0} + \sigma_{\bar{p}}^{\Lambda} + \sigma_{\bar{p}}^{0} + \sigma_{\bar{p}}^{Hep,pHe,HeHe}$ measure + ignored = $\sigma_{\bar{p}}^{0}$ assumed MC or simple scaling factors

Crucial inputs from LHCb data (FT)

-(n)PDF on nuclei present in interstellar medium

-validation of the theory used to describe HF hadroproduction

-cold and hot nuclear matter effects (in pA and AA collisions)

Cosmic Rays and DM

UHE CR composition (strongly model dependent) is still very uncertain! Solving the **cor**

PROSA prompt $(\nu_{\mu} + \bar{\nu}_{\mu})$ flux: QCD scale, mass and PDF uncertainties

Ria uncertainties from PDF

Heavy Flavour

Complementary D and B-physics done at high energies

-non-perturbative intrinsic charm (already hints from LHCb-FT PRL 122, 132002 (2019))

-5-quark Fock state (uudQQ) of the proton at high-x

Intrinsic charm

 10^{-}

 10^{-4}

10

BHPS with CTEQ6.5

 C, \overline{C} at $\mu = 2 \, \text{GeV}$

-2

x

 10^{-1}

100

Statistics in full synergy mode (1 yr data taking)

LHCb-PUB-2018-015

Storage cell	gas	gas flow	peak density	areal density	time per year	int. lum.
assumptions	type	(s^{-1})	(cm^{-3})	(cm^{-2})	(s)	(pb^{-1})
	He	1.1×10^{16}	10^{12}	10^{13}	3×10^3	0.1
	Ne	3.4×10^{15}	10^{12}	10^{13}	3×10^3	0.1
	Ar	2.4×10^{15}	10^{12}	10^{13}	2.5×10^6	80
Uppolarized	Kr	8.5×10^{14}	5×10^{11}	5×10^{12}	1.7×10^6	25
	Xe	6.8×10^{14}	5×10^{11}	5×10^{12}	1.7×10^6	25
gus	H_2	1.1×10^{16}	10^{12}	10^{13}	5×10^6	150
	D_2	$7.8 imes 10^{15}$	10^{12}	10^{13}	3×10^5	10
	O_2	2.7×10^{15}	10^{12}	10^{13}	3×10^3	0.1
	N ₂	$3.4 imes 10^{15}$	10^{12}	10^{13}	3×10^3	0.1
Unpolarised gas	$ \begin{array}{c} \mathrm{Kr} \\ \mathrm{Xe} \\ \mathrm{H}_2 \\ \mathrm{D}_2 \\ \mathrm{O}_2 \\ \mathrm{N}_2 \end{array} $	$8.5 \times 10^{14} \\ 6.8 \times 10^{14} \\ 1.1 \times 10^{16} \\ 7.8 \times 10^{15} \\ 2.7 \times 10^{15} \\ 3.4 \times 10^{15} \\ 10^{15} $	$5 \times 10^{11} \\ 5 \times 10^{12} \\ 10^{12$	$5 \times 10^{12} \\ 5 \times 10^{12} \\ 10^{13$	$ \begin{array}{r} 1.7 \times 10^{6} \\ 1.7 \times 10^{6} \\ 5 \times 10^{6} \\ 3 \times 10^{5} \\ 3 \times 10^{3} \\ 3 \times 10^{3} \\ \end{array} $	2 2 15 1 ((

example pAr @115 GeV

	80/pb
xsection	~3%
	28 M
	280 M
	2.8 M
	280 k
	24 k
	24 k
	xsection

Deep in the hadronic structure

Accessing the quark TMDs

Accessing the quark TMDs

Sensitive to quark TMDs up to high x_2^{\uparrow} through TSSAs

(ϕ : azimuthal orientation of lepton pair in dilepton CM)

Accessing the quark TMDs

arXiv:1807.00603

High precision achievable for observables connected to (i.e.) the transversity, the Boer-Mulders function, the pretzelosity and the Sivers TMDs

... heavy quark sector

Accessing the gluon TMDs

		Unpol	arly pol.		
n	U	f_1^g			$h_1^{\perp g}$
C I e O	L		g_1^g		$h_{1L}^{\perp g}$
	т	$f_{1T}^{\perp g}$	$g_{1T}^{\perp g}$		h_{1T}^g
n		711			$h_{1T}^{\perp g}$

In high-energy hadron collisions Heavy Quarks are dominantly produced through gg interactions:

The most efficient way to access the gluon dynamics inside the proton at LHC is to measure Heavy Flavour observables

LHCb can measure nearly all quarkonia states (including C-even) with high precision! The expected yields are much larger than previous fixed-target experiments. Heavy mesons are unique observables, poorly accessible from other hadron-hadron experiments [unique channels: pseudoscalar quarkonia (η , η_c , $\eta_c(2S)$, $\chi_{c,b}$), Y, J/ Ψ , Ψ ', di–J/ Ψ , Y(1,2,3S), D, B-mesons, DY ($\mu^+\mu^-$) j

Accessing the gluon TMDs

Weizsacker-Williams (WW) gluon distributions

dipole (DP) gluon distributions

unpolarized gluon TMD

[D. Boer: arXiv:1611.06089] $e \, p \to e' \, Q \, \overline{Q} \, X$ $pp \to J/\psi \, \gamma \, X$ DIS DY SIDIS $pA \to \gamma \text{ jet } X$ $pp \to \eta_{c,b} X$ $pp \to HX$ $e p \rightarrow e' j_1 j_2 X$ $pp \to \Upsilon \gamma X$ $f_1^{g[+,+]}$ (WW) \checkmark $\sqrt{}$ $\sqrt{}$ X \times Х \times $f_1^{g[+,-]}$ (DP) \checkmark \checkmark $\sqrt{}$ $\sqrt{}$ Х \times \times

linearly polarized gluon TMD				$pp \to \gamma \gamma X$		$pA \to \gamma^* \operatorname{jet} X$		$e p \to e' Q \overline{Q}$ $e p \to e' j_1 j_2$	$\overline{Q} X $ M $_2 X $ M	$pp \to \eta_{c,b} X$ $pp \to H X$	$\begin{array}{c c} pp \rightarrow \\ pp \rightarrow \end{array}$	$J/\psi \gamma X$ $\Upsilon \gamma X$			
-		L	$\perp g [+,+]$	(11/11/)		/			/		/		/]	
			DIS DY		SIDIS		$pA \rightarrow \gamma {\rm jet} Z$		$C e p \to e' Q \overline{c}$		$Q \overline{Q} X \mid pp \to \eta$		$g_{c,b} X \mid pp \to J/\psi \gamma$		
									$e p \rightarrow e' j_{z}$	$_{1} j_{2} X$	$pp \to P$	$HX \mid pp$ -		$\Upsilon \gamma X$	
	$f_1^{g[+,+]}$ (WW)	×	×	×	e l	×	[D. E	/ Boer: arXiv:16	511.06	/ 089, D. Boer	et al. H	 EPJ 08 20	./ 016 001]	
$ \begin{array}{c} f_1^{g[+,-]} (DI \\ TMDs \\ (Sivers) \end{array} $					DY	SIDIS	$p^{\uparrow} A \rightarrow h X$	$p^{\uparrow}A$	$A \to \gamma^{(*)} \operatorname{jet} X$	$p^{\uparrow}p \rightarrow \phi$	$\gamma \gamma \chi X$	$e p^{\uparrow} \rightarrow c$	$e'Q\overline{Q}X$		
										$p^{T}p \rightarrow p^{\uparrow}p$	$p^{\uparrow}p \rightarrow J/\psi \gamma X$		$e p^{T} \to e' j_1 j_2 X$		
										$p \cdot p \rightarrow$	· J/ψ J/ψ Λ			1	
			$f_{1T}^{\perp g [+,+]}$	(WW)	×	×	×		×		\checkmark	1	\checkmark		
			$f_{1T}^{\perp g [+,-]}$	(DP)	\checkmark	\checkmark	\checkmark		\checkmark		×		×		
$f_{1T}^{\perp g[+,+]} \text{ (Weizsacker-Williams type or "f-type")} \rightarrow \text{antisymmetric colour structures} \qquad e p \rightarrow e' j_1 j_2 X \qquad pp \rightarrow H X \qquad pp \rightarrow \Upsilon \gamma X$															
$f_{1T}^{\perp g[+,-]}$ (Dipole s type or "d-type") \rightarrow symmetric colour structures								V Sign change V		\checkmark					
$h_1^{\perp g_{1}, -j}$ (DP) ×							\checkmark	× Untversalit		ersality	of QCD	×			
											(indic	ation f	rom COl	MPASS and	l RHIC)

Can be measured at the Electron Ion-Collider (EIC)

Can be measured at FT-LHCb

Exclusive meson production

→ In practice a few GeV²

Heavy-Ion world

Heavy-Ion collision: QGP and phase transition

Heavy-Ion collision: QGP and phase transition

Heavy-Ion collision: QGP and phase transition

<u>3 experimental degrees of freedom</u>: rapidity scan, different colliding systems, centrality dependence

Rapidity scan at 72 GeV with FT@LHC can complement the RHIC beam energy scan from 62.4 GeV down to 7.7 GeV (at $y_{cms} \sim 0$)

how to scan the phase space

Color screening and sequential suppression

Color Screening in hot nuclear matter prevents formation of cc bound states

Dissociation temperature from lattice QCD (+hydro)

Phys. A28(2013) 1340012

Υ(1S)

r(2S) r(3S) χ_b(2P

χ_b(1P)

QGP tomography

Probing:

- -the longitudinal extension of the hot medium (high rapidities)
- -the colliding systems of different sizes
- -the centrality dependence
- -with and w/o HF probes

Temperature dependence of the shear viscosity to entropy density ratio (η /s) by measuring the rapidity dependence of the anisotropic flow

3D+1 viscous hydrodynamic calculations

Elliptic flow in ultra-relativistic collisions with polarised deuterons

arXiv:1906.09045, 2001.10260

Ridge and flow measurements, connected to collectivity phenomena, are among the most interesting results achieved in the last years in the QGP physics.

We can put this in connection with <u>spin clarifying the nature of dynamics in small systems</u>

its experimental confirmation would prove the presence of the shape-flow transmutation mechanism, typical of hydrodynamic expansion, or rescattering in the later stages of the fireball evolution

ultra-relativistic d+A collision, where the deuteron is polarised along the axis Φ_P perpendicular to the beam

Ellipticities of the fireball

A polarised target at LHC can easily provide Pb D^{\uparrow} collisions

Installation in August 2020 Data taking during LHC Run3 2022-2024

Gas Feed System

Internal side view

It is the only object into the LHC primary vacuum

The storage cell ... the only object in the LHC primary vacuum

During the installation

The Gas Feed System that will be completed and installed in 2021

Besides the unique scientific production, the SMOG2 system, during the LHC Run 3 (2022-2024), will deliver the first data usable for studying the mutual target-beam interactions providing a fundamental playground for the R&D of LHCspin

The technique proposed is well consolidated

Design follows the successful HERMES Polarised Gas Target which ran at HERA 1996 -2005, and the follow-up PAX target operational at COSY (FZ Jülich)

However the R&D is complex and needs several innovative developments

Polarised Gas Target (PGT) topology – a schematic view

Polarised Gas Target (PGT) topology – a schematic view

Another option is to cut all this part and put the PGT closer to the VELO tracker

Conclusions

- A lively and fast-growing fixed-target program is being developed at LHCb, exploiting the unique kinematic conditions provided by a TeV-scale beam and a fully instrumented forward spectrometer
- The installation of the first storage cell target for unpolarized gases happened in August 2020. The PGT could come few years later.

Conclusions

- A lively and fast-growing fixed-target program is being developed at LHCb, exploiting the unique kinematic conditions provided by a TeV-scale beam and a fully instrumented forward spectrometer
- The installation of the first storage cell target for unpolarized gases happened in August 2020. The PGT could come few years later.

Fixed target collisions at the LHC represent a unique possibility for a laboratory for QCD and astroparticle in unexplored kinematic regions ... in a realistic time schedule

