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Vector particle polarization: frames and parameters
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Vector particles are always polarized

The production of Z, W, y and y* (Drell-Yan) is generally well explained by the
short-distance coupling of quarks and gluons.

In particular, for helicity conservation the polarization is always transverse

along some natural axis z
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At very low p; and for dominant 2-to-1 processes,
of order O(a°),

a fully transverse polarization is seen

in the Collins-Soper frame

At high p; and for dominant 2-to-2 processes, of
order O(al),

a fully transverse polarization would be seen

in the helicity frame.

The CS frame smears Ay away from p; = 0.

As a recognizable consequence, the polarization
becomes strongly p; dependent (from +1 to -1/3)



Is “unpolarized” even possible?

Vector states are intrinsically polarized for any given elementary process

Theorem [P.F. et al.,, PRL 105, 061601] Intuitively consistent with
For any subprocess producing a J = 1 state classical expectation:
|V;),),)=a_,|1,-1)+a,|1,0)+a,,|1,+1), a vector of modulus 1 has
there exists a quantization axis always projection 1 along
along which the J, = 0 component a, vanishes some axis

..which implies that A4 = +1 along that axis



Vector quarkonia: a paradigmatic exception

Mid-rapidity LHC data show unpolarized production of vector quarkonia

0

A

CMS, pp @7 TeV
Helicity frame

o
o)

o
o

[Y(1S): = 40% from yx,] (25)

I

g—t%'{}}-t_*_ —+§ ‘ Y(1S)

[J/W: = 25% from ]
[Y(2S): feed-down free]

o
'S

o
S}

==

S o
IS [\ o

O_IIIlIII|III|III|III|III|III|III|III|III

o
o

PLB 727 (2013) 382
PRL 110 (2013) 081802

e v v b v P by Py 1y
8 10 12 14 16 18 20 22

pT/ M

o
o0

1
—

N
N
(o]

* None of the parameters Ay, A, A5, Ais significantly # 0
* There is no visible dependence on p;: seemingly not a transition domain

* No visible difference between states despite different x feed-downs
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The role of X, decays: finally from data

PRL 124 (2020) 162002]
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CMS measured the ratio between the
(J/W from) x_, and x,, cosd distributions.

This provides a constraint on the
difference between the two polarizations



Indirect experimental constraints
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ATLAS and CMS measurements of J/Y, Y(2S), x., and x,, cross sections,

together with the J/¢ and ¢(2S) polarizations,

constrain the sum of the y_, and x., polarizations

(*) Only assumption: directly produced J/i and ¢)(2S) have the same polarization vs p;/M



(*) A “universa

I”

p./M scaling

No hint of mass-dependence in mid-rapidity p; distributions (nor for Ay)
from J/¢ to Y(3S) after dimensional scaling, p; — p;/M, at least for p;/M > 2

—> no reason to question similarity of production dynamics between direct J/¢ and (2S)
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The x, states are strongly polarized!

The combination of these two “orthogonal” experimental constraints

determine the two individual x., and x., polarizations = of : “ous
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J/UY from x, and x,, are, respectively,
transversely and longitudinally polarized
— they tend to cancel out in their contribution to J/{




...and the J/Y polarization is even more “zero”!

The global data fit also allows us to extract a measurement of
the polarization of the directly produced )/

[en]

S — Direct Jip (same as y(2S))

A stronger evidence of
unpolarized production!
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Zero and constant polarization is a
big challenge to production models

|

Only a “fortunate”
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, mixture of subprocesses

or randomization effects
can lead to zero polarization
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— a clear sign of the unique nature and production mechanism of heavy quarkonia
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Are we seeing a cascade mechanism?

Without invoking any theory framework, the most natural way to explain a zero polarization
observation is a two-step mechanism with an unobserved intermediate J = 0 state

E.g.:

pp — cc[)=0] —» J/Yg

In the transition from the J = 0 “pre-resonance” to the vector bound state,
the polarization is fully randomized because we lose connection to its natural reference

1 In the cC rest frame

J/Y is indeed
intrinsically
polarized

| Inthe J/’s pp-HX frame

J/Y looks
unpolarized!
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The “cascade” (factorization) approach of NRQCD

Non-Relativistic

For heavy quarkonia
two distinguishable steps
are foreseen

2) long-distance evolution to
the colour-neutral bound state

quantum numbers
change to final

1) short-distance
partonic process

g

nc ’ nb [1SO]

B, Y[PS, ] Xeo: Xpo [*Po |
. Xei s Xoa PP1 ] X s X2 [PP5 ]

produces in general a coloured QQ pair
of any 25*1L ; quantum numbers

i 15 35 Po 3p Even if the . .QC_Z state
0 B 1 1p, 235 is not observed, it determines,
3p, 2 3p_ °D 1p : with its own quantum properties,
3D, D, 3p S the observable kinematics and polarization
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The “cascade” (factorization) approach of NRQCD

For heavy quarkonia
two distinguishable steps
are foreseen

2) long-distance evolution to
the colour-neutral bound state

1) short-distance
partonic process

- —— ———

' 1) short-distance coefficients (SDCs): :  2) long-distance matrix elements (LDMEs): ,
1 pr-dependent partonic cross sections : :_C_Of‘itin_t'_ﬁ_“_ef' er’_“_df‘t_a ___________ :
CTTTT T T — ) \ [ A \
G(A +B—> Q + X) = z S{A +B—> (QQ)C[ZS+1LJ] + X} "Z{(QQ)C [28+1LJ] — Q}
S, L C

QQ angular momentum
and colour configurations




Curves from H.-S. Shao et al.,
PRL 108, 242004; PRL 112, 182003; CPC 198, 238

Direct J/y in NRQCD: the “bricks” of the p; distribution

I))

A hierarchy in the expansion over the “small” Q-Qbar relative velocity (“v-scaling”)
foresees the dominance of a few of the 25*1L ; cascade channels:
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Mixture of different pre-resonance contributions,
with characteristic p; spectra (and polarizations: see next slide)

— by fitting the experimental p; distributions it is possible to determine the
coefficients of all terms (LDMEs) and consequently predict the polarizations
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Curves from H.-S. Shao et al.,
PRL 108, 242004; PRL 112, 182003; CPC 198, 238
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The polarization terms: pieces of a puzzle?

Of the four contributing terms, only the 1S, leads “naturally” to zero polarization:

q—_) L
(< =
C P-wave term actually unphysical (> +1)
15 n proper cancellation needed
C «—— torecover the physical polarization
1
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To reproduce the data, the remaining terms must Zero J/U polarization
 either be individually suppressed is a conceptual
— violation of NRQCD’s v? hierarchy! puzzle for NRQCD!

*or sumto ~zero — redundant expansion basis!




What about y_, and x_,?

In NRQCD, ., , production has two terms: S, octet and *P, , singlet.

One parameter r determines
1) the x,, / x., yield ratio

2) Al? cl)
3) Al? c2)

A strongly
constrained and
unambiguous
prediction, not
requiring any
“fine-tuning”...

+1

r = m2 <0Xco(3s§8])> / <0Xco

=0.217 £ 0.003 from the CMS + ATLAS

J_|7 X., / X., yield ratio (ave

- [P.F. et al. EPJC 78 (2018) 268]

NRQCD

— ]
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Q)

raged)

— X1 ... and
perfectly
. agreeing
< X with data

An out-of-the-box
success of NRQCD!
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Part 2
The puzzle of low-p; (fixed target) data

Past fixed-target experiments provided J/y and Y polarization measurements

with different beams and targets, different energies,
and in three different reference frames, as functions of p; and x.

They form a very perplexing picture...

17



J/Y polarization in the CS frame

Collins-Soper
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J/W polarization in the GJ frame
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Gottfried-Jackson
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J/Y polarization in the HX frame
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Y Polarization in the CS frame
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Picture to be observed “with a grain of salt”:
* most of these measurements were obtained from 1D analyses

(with risks discussed in [P. Faccioli, Mod. Phys. Lett. A Vol. 27, 1230022 (2012)])
* for some of them systematic uncertainties were never evaluated
* some of them exhibit suspicious fluctuations, even reaching unphysical values
* we are mixing different energies and target nuclei (nuclear effects may exist)

Nevertheless, we can see some indications...

0) Obvious: new, better measurements are welcome

* Looking at polar and azimuthal components
e Using invariant polarization as check
* Possibly disentangling feed-down components: {(2S) and/or .
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1) CS/GJ > HX hierarchy: dominance of 2 > 1

1

1

Ag looks “flat”
in the HX frame

in the three frames (uncertainties ~100% corr.)
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— CS (direction of colliding partons) gives the

III

“optimal” observation

— probable dominance of
2—1 g-gbar / g-g > QQbar processes,
where the QQbar is strongly polarized,
directly inheriting the angular momentum
state of the system of colliding partons:
we see the partons’ natural polarizations



2) Smearing with increasing p;: importance of k; effects

The J/Y polarization magnitude, but not the Y one,
05
=]
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- EPJ C 60, 517 (2009) < 1 A}‘ % i
Ag © : %
. —4—1 t 0.5
05 Y(2+3S) CSframe
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PRL91, 211801 (2003)
_1 | . | ‘ | . | ‘ | . | . | . | -0 5
0 05 1 15 2 25 3 35 4 S RARLMALEE ML R
(br) (GeVIc) 05 1 1.5 p2 [GZGSV fci,'
T

seems to decrease quickly with increasing px.

In fact the J/Y measurement reaches higher p;/M values than the Y one.
Does this mean that in J/{ production, but not in Y production,
we start seeing 2 — 2 processes “smearing” the polarization?

Or, what about the parton k;?

24



2) Smearing with increasing p;: importance of k; effects

The intrinsic transverse momenta of the partons cause an event-by-event tilt

between the “natural” polarization axis (relative direction of the colliding partons),

and the polarization axis used in the experimental analysis (CS).

The tilt angle & satisfies sin’d =~

This description approximately
accounts for the p; dependence
observed for the cc...
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...and for the lack of a corresponding
observation in the bb case
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Y(2+3S)
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k;-tilted

The p; — 0 limit gives the most interesting (unsmeared) polarization measurement!
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3) E866’s Y puzzle: importance of the y feed-down

| 4
- 1t

0.5~ Mﬂ ~ 0.8
I 4

Ag 0 -
i E866 p-Cu @ 38.8 GeV
05~ ® Y(1S)
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xe)

1

1S, 2S and 3S states should have about the same
polarization when directly produced

(or when coming from heavier Y) = Ag= +1

To justify the large difference between 2-3S and 185,
we must assume that x, + x, feed-down:

a) is negligible for 2-3S states and large for 1S

b) tends to be longitudinal
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3) E866’s Y puzzle: importance of the y feed-down

0.5 —

A 1= =
i E866 p-Cu @ 38.8 GeV
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xe)
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1S, 2S and 3S states should have about the same
polarization when directly produced

(or when coming from heavier Y) = Ag= +1

To justify the large difference between 2-3S and 185,
we must assume that x, + x, feed-down:

a) is negligible for 2-3S states and large for 1S

b) tends to be longitudinal

(only an example: they have in general different

- 50—-60% of the Y(1S) come from Xb polarizations, as seen for the x, at high p;)
- X, states are produced, e.g., with J, = *1 — A5(x,,)= As(Xp,) = —1/3

= the observed Y(1S) would have A4 in the range 1/13 —1/4 =0.08 — 0.25

X production is not a second-order correction for J/{ and Y yields and polarizations!



4) Strong x; (and mass) dependence: g-gbar vs gg ?

A trend may be recognized in the perplexing scenario of J/{ and Y polarizations
VS X; = X; — X, when we correlate the observed

longitudinal polarizations with the dominance of gg — QQbar processes and
transverse polarizations with the dominance of ggbar — QQbar processes

qqbary g >>qqbar ,, ?

. =
~ 10 - +++ Y(2+3S)

05 — > qggbar ~gg?

<X1 * X327 Y(ns)

—Hy!
X, = x,=0(0.1) el .

I L \\
gg dominance? €— +

_1\\\nnll\\\n\\\nn\\\nn.\\
-0.2 0 0.2 04 0.6 0.8 1

<XF$

?7?

Comparing measurements with predictions for the gg and ggbar cases
can probe the identity of the colliding partons
— use polarization vs x; as further constraint on gluon distribution!
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(gg vs ggbar) < (longitudinal vs transverse) ?

transversely
polarized
gluons

G

—

—

. = e.g. “longitudinal” if QQbar is a vector |

g-g rest frame = QQ rest frame

helicity conservation

() (—1/2) (:)
q +1/2 ~ 7 ~ .
___CI__)__<__CI_____> CS axis

=QQ) = |1,£1)

= e.g. “transverse” if QQbar is a vector

g-g rest frame = QQ rest frame

== -2 4 transversely
=) +2 == polarized
=) O == gluons
h 0 q - .
___q_>__<_g___z_;cs axis
| J, £1 ) forbidden

(observed quarkonium polarization will depend on the JP of the intermediate QQbar)
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Summary

High p;

Zero polarization for the J/, given that it is a vector (=intrinsically polarized) particle,
is an emblematic manifestation of its peculiar production mechanism.

The agreement with NRQCD requires a specific parameter tuning, possibly pointing to
the existence of a simpler (more natural) hierarchy of processes.

More precise measurements are needed to assess whether the polarization always
remains zero and flat vs p;.

Low p;

The puzzling scenario of existing fixed-target data contains interesting indications:

dominance of 2—1 processes

importance of parton-k; effects

necessity to discriminate direct production and y-state feed-down contributions
maximal difference between polarizations in g-gbar and gg production:

an opportunity to improve gluon PDF determination?



