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Transverse oscillation is an important issue in beam dynamics of cyclotrons and can be described by the

Mathieu equation. We review the standard form of the Mathieu equation, d
2u

dθ2 þ ðδþ ε · cos 2θÞu ¼ 0, and

propose a modification of the method of multiple scales (i.e., a perturbation method) so that the asymptotic
analytical solutions of the Mathieu equation can be computed in the stable and unstable regions for both
δ ≥ 0 and δ < 0. This method was applied to the nonlinear transverse oscillation equations for a cyclotron.
Analytical solutions for transverse oscillation in the stable and unstable regions (i.e., vicinity of the
resonances) were obtained, and the accuracy of these analytical solutions was confirmed by their close
agreement with the direct numerical integration. Useful results such as the analytical solution of the
transverse oscillation frequency, increasing rate of the amplitude in unstable regions, and the resonance
width were also derived; the stable condition and driving terms of the resonances can be obtained from the
analytical solutions.

DOI: 10.1103/PhysRevAccelBeams.22.104001

I. INTRODUCTION

The well-known Mathieu equation has the form of
d2u
dθ2 þ ðδþ ε · cos 2θÞu ¼ 0; it occurs in a wide variety of
physical problems and has been widely investigated since
its discovery. The solution to the Mathieu equation is
determined by its coefficients. The δ�ε plane is separated
into stable and unstable regions by transition curves. The
parameter pairs ðδ; εÞ that belong to the stable regions
correspond to bounded solutions; parameter pairs ðδ; εÞ that
belong to the unstable regions correspond to unbounded
solutions [1–5].
Perturbation methods such as the method of multiple

scales (MMS) and Lindstedt-Poincaré (LP) method are
effective at solving the transition curves and deriving
analytical solutions for the Mathieu equation but have
some limitations. The LP method can only obtain
bounded asymptotic solutions for stable regions, not
unbounded solutions for unstable regions [6–10]. The
MMS can obtain asymptotic solutions for both stable and

unstable regions in the case of δ ≥ 0 but is invalid when
δ < 0 [7–11]. In this paper, we propose a modified MMS
that can obtain the bounded and unbounded solutions for
not only δ ≥ 0 but also δ < 0.
To date, numerical simulations [12–18] are widely

used to study transverse oscillations in cyclotrons.
Although they can accurately describe the particle
motion, they cannot intuitively show the relationship
between the parameters of a magnetic field and particle
motion behavior in the vicinity of resonance. There
are also some analytical formulas describing transverse
oscillation as well as resonances for cyclotrons in
earlier years in Refs. [19–23]. In this paper, we applied
the modified MMS to two-dimensional (2D) nonlinear
Mathieu-type equations that arise in the study of the
transverse oscillations for the SC200 superconducting
cyclotron. Analytical solutions for the transverse oscil-
lation in the stable and unstable regions were obtained.
For a systematic study, the stable conditions, the
driving terms and the amplitude growth in the vicinity
of 2Qr ¼ 2, Qz ¼ 1

2
, Qr − 2Qz ¼ 1 were discussed using

the analytical solutions. These analytical results were
confirmed by a comparison with the direct numerical
integration. As an analytical study, the contribution of
this work is a quantitative and accurate analytical
interpretation of the transverse oscillation for the cyclo-
tron, and a comprehensive discussion on the resonan-
ces, which can help us have a better understanding of
the dynamics.
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II. MODIFIED METHOD OF MULTIPLE SCALES
FOR SOLVING THE MATHIEU EQUATION

A. Standard form of the method of multiple scales

The standard form of the Mathieu equation is written as

d2u
dθ2

þ ðδþ ε · cos 2θÞu ¼ 0; ð1Þ

where δ and ε are real numbers. The first step of the
MMS is to introduce several scales θn ¼ εn · θ, where
n ¼ 0; 1; 2;…. In other words,

θ0 ¼ θ; θ1 ¼ ε · θ; θ2 ¼ ε2 · θ: ð2Þ

These scales are treated as independent. One conse-
quence is that the derivative with respect to θ is now
transformed into

d
dθ

¼ D0 þ ε ·D1 þ ε2 ·D2 þ � � � ; ð3Þ

d2

dθ2
¼ D2

0 þ ε · 2D0D1 þ ε2 · ð2D0D2 þD2
1Þ þ � � � ; ð4Þ

where D0, D1, and D2 are partial differential operators
defined as

D0 ¼
∂
∂θ0 ; D1 ¼

∂
∂θ1 ; D2 ¼

∂
∂θ2 : ð5Þ

According to the MMS, the solution of Eq. (1) has a
power series expansion:

uðθ0; θ1; θ2Þ ¼ u0ðθ0; θ1; θ2Þ þ ε · u1ðθ0; θ1; θ2Þ
þ ε2 · u2ðθ0; θ1; θ2Þ þ � � � : ð6Þ

Substituting Eqs. (3), (4), and (6) into Eq. (1), and letting
the coefficients of each power of ε to be zero, we arrive at
the following approximate equations:

D2
0u0 þ δ · u0 ¼ 0; ð7Þ

D2
0u1 þ 2D0D1 · u0 þ δ · u1 ¼ − cos 2θ · u0; ð8Þ

D2
0u2 þ 2D0D1 · u1 þ ð2D0D2 þD2

1Þ · u0 þ δ · u2

¼ − cos 2θ · u1: ð9Þ

In the above procedure, a differential equation with
variable coefficients [Eq. (1)] is transformed into several
approximate equations with constant coefficients
[Eqs. (7)–(9)]. Each linear partial differential equation
in Eqs. (7)–(9) can be solved in sequence. The solution
to Eq. (7) is easily found:

u0 ¼ Eðθ1; θ2Þ · ei
ffiffi
δ

p
θ0 þ E�ðθ1; θ2Þ · e−i

ffiffi
δ

p
θ0 : ð10Þ

This is the zeroth-order solution, where the coefficients
Eðθ1; θ2Þ and E�ðθ1; θ2Þ are undetermined conjugated
functions. Substituting Eq. (10) into Eq. (8) results in

D2
0u1 þ δ · u1 ¼ −2

h
i

ffiffiffi
δ

p
·D1Eðθ1;θ2Þ · ei

ffiffi
δ

p
θ0

− i
ffiffiffi
δ

p
·D1E�ðθ1;θ2Þ · e−i

ffiffi
δ

p
θ0
i

− 1

2
ðe2iθ0 þ e−2iθ0Þ

·
h
Eðθ1;θ2Þ · ei

ffiffi
δ

p
θ0 þE�ðθ1;θ2Þ · e−i

ffiffi
δ

p
θ0
i
:

ð11Þ

The inhomogeneous terms [i.e., right side of Eq. (11)]
contain

−2
j
i

ffiffiffi
δ

p
·D1Eðθ1; θ2Þ · ei

ffiffi
δ

p
θ0

− i
ffiffiffi
δ

p
·D1E�ðθ1; θ2Þ · e−i

ffiffi
δ

p
θ0
k
; ð12Þ

which has the same frequency as the associated homo-
geneous equation. This causes secular terms, which must
be avoided. Therefore, the coefficients of ei

ffiffi
δ

p
θ0 and e−i

ffiffi
δ

p
θ0

in Eq. (12) need to be zero. Eliminating these coefficients
yields the condition for determining the undetermined
function Eðθ1; θ2Þ:

D1Eðθ1; θ2Þ ¼
∂Eðθ1; θ2Þ

∂θ1 ¼ 0;

D1E�ðθ1; θ2Þ ¼
∂E�ðθ1; θ2Þ

∂θ1 ¼ 0: ð13Þ

In other words, Eðθ1; θ2Þ and E�ðθ1; θ2Þ are independent
of θ1 and are functions of θ2:

Eðθ1; θ2Þ ¼ Eðθ2Þ; E�ðθ1; θ2Þ ¼ E�ðθ2Þ: ð14Þ

Equation (13) represents the condition for avoiding the
secular terms in u1. After the secular terms are removed, the
solution of Eq. (11) can be written as

u1 ¼ − 1

2

�
Eðθ2Þ

δ − ð ffiffiffi
δ

p þ 2Þ2 · e
ið ffiffi

δ
p þ2Þθ0

þ Eðθ2Þ
δ − ð ffiffiffi

δ
p − 2Þ2 · e

ið ffiffi
δ

p −2Þθ0

þ E�ðθ2Þ
δ − ð ffiffiffi

δ
p þ 2Þ2 · e

−ið ffiffi
δ

p þ2Þθ0

þ E�ðθ2Þ
δ − ð ffiffiffi

δ
p − 2Þ2 · e

−ið ffiffi
δ

p −2Þθ0
�
: ð15Þ
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This is the first-order solution. By substituting Eq. (15)
into Eq. (9) and letting the secular terms be zero, we obtain
the condition for avoiding secular terms in u2:

∂Eðθ2Þ
∂θ2 ¼ −iΛ1 · Eðθ2Þ;

∂E�ðθ2Þ
∂θ2 ¼ iΛ1 · E�ðθ2Þ;

ð16Þ

where

Λ1 ¼
h

1

δ−ð2þ ffiffi
δ

p Þ2 þ 1

δ−ð2− ffiffi
δ

p Þ2
i

8
ffiffiffi
δ

p : ð17Þ

Equation (16) represents the condition to determine
Eðθ2Þ. Then, Eðθ2Þ and E�ðθ2Þ can be expressed as

Eðθ2Þ ¼ C1 · e−iΛ1θ2 ; E�ðθ2Þ ¼ C�
1 · e

iΛ1θ2 ; ð18Þ

where C1 and C�
1 are conjugated complex numbers that are

determined by the initial condition. With the above pro-
cedure, the undetermined conjugated complex functions
Eðθ1; θ2Þ and E�ðθ1; θ2Þ are completely determined, and
u0ðθ0; θ1; θ2Þ and u1ðθ0; θ1; θ2Þ are determined next.
Finally, by substituting u0 and u1 into Eq. (6), the solution
to the original Eq. (1) is given by

u ¼ u0 þ ε · u1 þ � � �
¼ C1 · eið−ε

2·Λ1þ
ffiffi
δ

p Þθ þ C�
1 · e

−ið−ε2·Λ1þ
ffiffi
δ

p Þθ

− ε

2

�
E

δ− ð ffiffiffi
δ

p þ 2Þ2 · e
ið ffiffi

δ
p þ2Þθ þ E

δ− ð ffiffiffi
δ

p − 2Þ2 · e
ið ffiffi

δ
p −2Þθ þ E�

δ− ð ffiffiffi
δ

p þ 2Þ2 · e
−ið ffiffi

δ
p þ2Þθ þ E�

δ− ð ffiffiffi
δ

p − 2Þ2 · e
−ið ffiffi

δ
p −2Þθ

�
:

ð19Þ

The perturbed frequency of the system can be written as

Qr ¼ −ε2 · Λ1 þ
ffiffiffi
δ

p
: ð20Þ

The numerical solution of Eq. (1) for δ ≥ 0 is obtained
with the fourth-order Runge-Kutta method and can be
used to validate the accuracy of the analytical solutions.
Figure 1 compares the results of the above analytical
formulas and numerical integration. The differences in
the trajectories are almost indistinguishable, and the
difference in the phase motion is very small. This proves
that the above analytical formulas are accurate.

B. Modification of the method
of multiple scales

As shown in Eq. (7), the zeroth-order approximation
equation has no periodic solutions when δ < 0; that is, the
MMS is invalid for this case. In fact, much literature on
nonlinear dynamics has applied the MMS to the transition
curves and asymptotic solutions of the Mathieu equation
with δ ≥ 0, but applying the MMS in the case of δ < 0 has
not been commonly discussed. We present a simple but
effective modification of the MMS to obtain both the
bounded and unbounded solutions for the Mathieu equation
with δ < 0.

FIG. 1. Trajectories (left) and phase motions (right) for parameter pairs ðδ; εÞ ¼ ð1.36; 0.4Þ in the stable region. The MMS is in blue,
and the direct numerical integration is in red.
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Equation (1) contains the linear term δ · u and the flutter
term ε · cos 2θ · u. For δ ≥ 0, the flutter term is a higher
order small quantity than the linear term when ε is a small
parameter. We can obtain the corresponding generating
system d2u

dθ2 þ δ · u ¼ 0 by setting ε ¼ 0; this is a stable
simple harmonic system, the flutter term could be treated as
a perturbation to this system. However, for the case of
δ < 0, the problem has changed in nature. The previous
generating system becomes unstable due to the linear term,
and the stability of the original system is mainly dependent
on the flutter term. At this point, we take the linear term as a
higher order smaller quantity than the flutter term; then, the
new generating system becomes d2u

dθ2 ¼ 0. To this end, we
introduce a new small parameter that satisfies 0 ≤ ξ ≤ 1 to
distinguish the perturbations of different orders, and a
higher order small parameter is introduced to a smaller
perturbation term:

d2u
dθ2

þ ξ3 · δ · u ¼ −ξ · ε · cos 2θ · u: ð21Þ

The original small parameter ε is now treated as a
constant. Equation (21) is equivalent to Eq. (1) when
ξ ¼ 1. After Eq. (21) is solved, the solution of Eq. (1)
can be obtained simply by letting ξ ¼ 1. The details for
solving Eq. (21) are presented below.
By expanding the variable u and derivative operator d2

dθ2

with respect to the new small parameter ξ and letting the
coefficients of each power of ξ be zero, we obtain the
following approximate equations:

D2
0u0 ¼ 0; ð22Þ

D2
0u1 þ 2D0D1u0 ¼ −ε · cos 2θ · u0; ð23Þ

D2
0u2 þ 2D0D1u1 þ ð2D0D2 þD2

1Þu0 ¼ −ε · cos 2θ · u1;
ð24Þ

D3
0u3 þ 2D0D1u2 þ ð2D0D2 þD2

1Þu1
þ ð2D0D3 þ 2D1D2Þu0 þ δ · u0 ¼ −ε · cos 2θ · u2:

ð25Þ

Here, the zeroth-order and first-order approximate equa-
tions do not contain secular terms; the zeroth-order and
first-order solutions can be solved from Eqs. (22) and (23)
directly:

u0 ¼ Fðθ1; θ2Þ; ð26Þ

u1 ¼
ε

8
· ðe2iθ0 þ e−2iθ0Þ · Fðθ1; θ2Þ; ð27Þ

where Fðθ1; θ2Þ is an undetermined function. Then the
second- and third-order solutions can be solved from

Eqs. (24) and (25), but higher-order solutions are usually
very small and thus can be neglected. However, we cannot
determine the solution completely with only the first two
order equations because the zeroth- and first-order solu-
tions contain the undetermined coefficients Fðθ1; θ2Þ,
which have to be determined by eliminating the secular
terms in Eqs. (24) and (25).
Substituting the first-order solution [Eq. (27)] into

the second-order approximate equation [Eq. (24)] and
eliminating the secular terms yields the condition for
determining Fðθ1; θ2Þ:

D2
1Fðθ1; θ2Þ ¼ − ε2

8
· Fðθ1; θ2Þ: ð28Þ

For simplification, we let

Λ2
2 ¼

ε2

8
: ð29Þ

Then, Fðθ1; θ2Þ can be expressed as

Fðθ1; θ2Þ ¼ ψðθ2Þ · eiΛ2θ1 þ ψ�ðθ2Þ · e−iΛ2θ1 ; ð30Þ

where ψðθ2Þ is an undetermined function. After the secular
terms in Eq. (25) are eliminated, the second-order solution
u2 follows. In general, however, the form of the second- or
higher-order approximation is very complicated, and the
corrections they provide are negligible. Thus, these high-
order approximate equations are not considered in further
derivations. That is,

u2 ¼ 0; u3 ¼ 0: ð31Þ

By substituting u2 ¼ 0 into Eq. (25) and eliminating the
secular term, we obtain the condition for determining
ψðθ2Þ:

2

�
ðiΛ2Þ

∂ψðθ2Þ
∂θ2 eiΛ2θ1 þ ð−iΛ2Þ

∂ψ�ðθ2Þ
∂θ2 e−iΛ2θ1

�

þ δ · ½ψðθ2Þ · eiΛ2θ1 þ ψ�ðθ2Þ · e−iΛ2θ1 � ¼ 0: ð32Þ

The solution of Eq. (32) is

ψðθ2Þ ¼ C2 · exp

�
i

δ

2Λ2

θ2

�
;

ψ�ðθ2Þ ¼ C�
2 · exp

�
−i δ

2Λ2

θ2

�
; ð33Þ

where C2 and C�
2 are complex conjugated numbers deter-

mined by the initial condition. If Eq. (33) is substituted into
Eq. (30), Fðθ1; θ2Þ can be expressed as

Fðθ1; θ2Þ ¼ C2 · e
iðΛ2θ1þ δ

2Λ2
θ2Þ þ C�

2 · e
−iðΛ2θ1þ δ

2Λ2
θ2Þ: ð34Þ
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With the above procedure, the undetermined function
Fðθ1; θ2Þ is completely determined, following which u0
and u1 are determined. Finally, the solution of Eq. (1) can
be obtained by letting ξ ¼ 1:

u ¼ u0 þ ξ · u1 þ � � � ¼ u0 þ u1 þ � � �
¼

n
C2 · e

iðΛ2þ δ
2Λ2

Þθ þ C�
2 · e

−iðΛ2þ δ
2Λ2

Þθo

·

�
1þ ε

8
· ðe2iθ þ e−2iθÞ

�
: ð35Þ

The perturbed frequency of the system can be written as

Qz ¼ Λ2 þ
δ

2Λ2

: ð36Þ

Based on Eq. (29), Λ2 can be expressed as Λ2 ¼
ffiffiffi
ε2

8

q
;

here, ε is the amplitude of the flutter term. It is noted that
Eqs. (35) and (36) are valid for Λ2 ≠ 0 because the
derivation is based on the assumption that the flutter term
is the dominant term and the linear term is a perturbation.
Thus, Λ2 should not be zero; otherwise, the flutter term will
vanish, and the assumption will be invalid. Letting Qz > 0,

we obtain Λ2 >
ffiffiffiffi
−δ
2

q
. If 0 < Λ2 <

ffiffiffiffi
−δ
2

q
, then the flutter

term is too small to overcome the instability caused by the
linear component; thus, the system is nonoscillating and

the frequency does not exist. Only when Λ2 >
ffiffiffiffi
−δ
2

q
,

namely the flutter term is sufficiently large, the system
can be stable and the corresponding frequency can be
described by Eq. (36).
The numerical solution of Eq. (1) for δ < 0 obtained

with the direct numerical integration (the fourth-order
Runge-Kutta method) can be used to validate the accuracy
of the analytical solutions. Figure 2 compares the results

of the above analytical formulas and those from direct
numerical integration. The errors between these two meth-
ods were very small, which verifies the accuracy of the
above analytical formulas.
In this section, we consider the asymptotic solution of

the Mathieu equation for δ ≥ 0 and δ < 0 in the stable
regions. However, obtaining a uniform general solution
for the Mathieu equation in the unstable regions is
difficult because the forms of the unbounded solutions
in the unstable regions strongly depend on the parameter
pairs ðδ; εÞ. In order to study the solutions in unstable
regions, we give several specific examples that come
from the beam dynamics of an isochronous cyclotron in
the next section.

III. APPLICATION TO THE BEAM DYNAMICS
OF A CYCLOTRON

The transverse oscillation is also known as the betatron
oscillation and is one of the most important issues in beam
dynamics [24,25]. It is well known that the transverse
oscillation can be unstable when its frequency approaches
the resonance condition n ·Qr þm ·Qz ¼ l. In this sec-
tion, we take the SC200 cyclotron as an example and solve
the transverse oscillation equations in its stable and
unstable regions (i.e., in the vicinity of resonances) with
the MMS. We discuss the resonances in the vicinity of
2Qr ¼ 2, Qz ¼ 1

2
, and Qr − 2Qz ¼ 1, and useful results

such as the resonance width, the driving terms, the stable
conditions, and increasing rate of amplitude in the unstable
regions are derived.
SC200 is a compact superconducting proton cyclotron

used for proton therapy. It can accelerate protons to
200 MeV and was designed in collaboration by ASIPP
(China) and JINR (Russia) [26]. SC200 has four spiral
sectors. The mean magnetic field is about 2.95 T in the
central region and 3.6 T in the extraction region.

FIG. 2. Trajectories (left) and phase motions (right) for parameter pairs ðδ; εÞ ¼ ð−0.008; 0.5Þ in the stable region. The MMS is in
blue, and the direct numerical integration is in red.
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A. Transverse oscillation in stable regions

The small amplitude transverse oscillation in a cyclotron
can be described by the following 2D Mathieu-type
equations (see the Appendix):

u00 þQ2
u · u ¼ −gðθÞ · u; ð37Þ

v00 þQ2
v · v ¼ −hðθÞ · vþ JðθÞ · uv; ð38Þ

where u corresponds to the radial oscillation and v
corresponds to the vertical oscillation. Qu and Qv are
unperturbed frequencies that satisfy Q2

u > 0 and Q2
v < 0.

gðθÞ, hðθÞ, and JðθÞ are periodic functions with a period
of T ¼ 2π. The properties of these coefficients are shown
in Figs. 10 and 11.
The physical meanings ofQu andQv are the unperturbed

tunes for zero flutter. They are related to the field index
of the mean magnetic field component. In an isochronous
cyclotron, the mean magnetic field component B0ðrÞ
increases with the radius to satisfy the requirement of
isochronism. The field index n ¼ − r

B0ðrÞ
dB0ðrÞ
dr is negative.

In this case, the vertical focusing is provided by the flutter
field component, and the mean field component provides
vertical defocusing; so, we have Q2

v < 0 in the vertical
plane, which corresponds to δ < 0 in the Mathieu equation.
Thus, the modified MMS is applied to the vertical plane.
Similar to the standard form of the Mathieu equation, the

stability of Eqs. (37) and (38) is related to their coefficients
[e.g., Q2

u, Q2
v, gðθÞ]. However, the relationship is more

complex, unlike in the standard form where it is easily
distinguished by the transition curves. However, when Q2

u,
Q2

v, and gðθÞ satisfy a certain relationship and make the
actual tunes approach the resonance conditions, the system
can be unstable.
gðθÞ and hðθÞ are functions of the equilibrium orbit

parameters and can be expanded into Fourier series:

gðθÞ ¼
X
n

Pneinθ þ P�
ne−inθ; ð39Þ

hðθÞ ¼
X
n

Mneinθ þM�
ne−inθ: ð40Þ

The values of the Fourier coefficients are proportional to
the magnetic field harmonics. First, the small parameter ε
that satisfies 0 ≤ ε ≤ 1 is introduced; then, the transverse
oscillation equations, Eqs. (37) and (38), are transformed
into the following perturbation equations:

u00 þQ2
u · u ¼ −ε · gðθÞ · u; ð41Þ

v00 þ ε3 ·Q2
v · v ¼ −ε · hðθÞ · vþ ε2 · JðθÞ · uv: ð42Þ

As described in Eq. (21), the principle of introducing
small parameters is based on the magnitude of the

perturbation; a higher-order small parameter is introduced
for a smaller perturbation term. Here, we introduced the
small parameters in Eqs. (37) and (38) with reference to
Eq. (21). It is noted that Eq. (38) differs from Eq. (21) in
that it contains a coupling term JðθÞ · uv, which is a
second-order small quantity, whereas the flutter term hðθÞ ·
v is a first order small quantity. Thus, ε2 is introduced into
the coupling term, and ε is introduced into the flutter term
to distinguish the orders of small quantity.
The key point of the MMS is introducing scaled time

coordinates and observing the motion at different time-
scales. In Eq. (42), the vertical motion is observed at a
different timescale, because the radial focusing is much
stronger than the vertical focusing owing to the negative
field index. Consequently, the vertical motion is much
slower and should be observed at a slower timescale.
Introducing the cubic power ε3 to the vertical motion
corresponds to a much slower timescale.
First, we introduce three scales θ0 ¼ θ, θ1 ¼ ε · θ, and

θ2 ¼ ε2 · θ. Then, we expand u and v in power series in ε
as follows:

u ¼ u0 þ ε · u1 þ ε2 · u2 þ � � � ; ð43Þ

v ¼ v0 þ ε · v1 þ ε2 · v2 þ ε3 · v3 � � � : ð44Þ

Then, the radial oscillation equation is approximated as
follows:

D2
0u0 þQ2

u · u0 ¼ 0; ð45Þ

D2
0u1 þ 2D0D1 · u0 þQ2

u · u1 ¼ −gðθÞ · u0; ð46Þ

D2
0u2 þ 2D0D1 · u1 þ ð2D0D2 þD2

1Þ · u0 þQ2
u · u2

¼ −gðθÞ · u1: ð47Þ

The vertical oscillation equation is approximated as
follows:

D2
0v0 ¼ 0; ð48Þ

D2
0v1 þ 2D0D1v0 ¼ −hðθÞ · v0; ð49Þ

D2
0v2 þ 2D0D1v1 þ 2ðD0D2 þD2

1Þv0
¼ −hðθÞ · v1 þ JðθÞ · u0v0; ð50Þ

D3
0v3 þ 2D0D1v2 þ ð2D0D2 þD2

1Þv1
þ ð2D0D3 þ 2D1D2Þv0 þQ2

vv0

¼ −hðθÞ · v2 þ JðθÞ · ½u0v1 þ u1v0�: ð51Þ

For the radial oscillation, the zeroth-order solution [i.e.,
solution of Eq. (45)] is easily found:
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u0 ¼ Eðθ1; θ2Þ · eiQuθ0 þ E�ðθ1; θ2Þ · e−iQuθ0 : ð52Þ

The first-order solution [i.e., solution of Eq. (46)] is

u1 ¼ −X
n

PnEðθ1; θ2Þ
Q2

u − ðnþQuÞ2
· eiðnþQuÞθ0 þ PnE�ðθ1; θ2Þ

Q2
u − ðn −QuÞ2

· eiðn−QuÞθ0 þ P�
nEðθ1; θ2Þ

Q2
u − ðn −QuÞ2

· e−iðn−QuÞθ0

þ P�
nE�ðθ1; θ2Þ

Q2
u − ðnþQuÞ2

· e−iðnþQuÞθ0 ; ð53Þ

where Eðθ1; θ2Þ and E�ðθ1; θ2Þ are undetermined conju-
gated functions. Then, by eliminating the secular terms

in Eqs. (46) and (47), Eðθ1; θ2Þ and E�ðθ1; θ2Þ can be
completely determined as follows:

Eðθ1; θ2Þ ¼ Eðθ2Þ ¼ C1 · e−iΛ1θ2 ;

E�ðθ1; θ2Þ ¼ E�ðθ2Þ ¼ C�
1 · e

iΛ1θ2 ; ð54Þ
where

Λ1 ¼
P

nPnP�
n

h
1

Q2
u−ðnþQuÞ2 þ

1
Q2

u−ðn−QuÞ2
i

2Qu
: ð55Þ

C1 and C�
1 are conjugated complex numbers that are

determined by the initial condition. Finally, by substituting
u0 and u1 into Eq. (43) and letting ε ¼ 1, the solution of the
original Eq. (37) can be written as

u ¼ u0 þ u1 þ � � �
¼ C1 · eiQrθ þ C�

1 · e
−iQrθ

−X
n

PnC1

Q2
u − ðnþQuÞ2

· eiðnþQrÞθ þ PnC�
1

Q2
u − ðn −QuÞ2

· eiðn−QrÞθ þ P�
nC1

Q2
u − ðn −QuÞ2

· e−iðn−QrÞθ

þ P�
nC�

1

Q2
u − ðnþQuÞ2

· e−iðnþQrÞθ: ð56Þ

Here,

Qr ¼ −Λ1 þQu ð57Þ

is the perturbed radial tune, and Λ1 is the tune shift
provided by the flutter field.
For the vertical oscillation, the solution of the zeroth-

order approximate equation [Eq. (48)] is

v0 ¼ Fðθ1; θ2Þ: ð58Þ

The solution of the first-order approximate equation
[Eq. (49)] is

v1 ¼
�X

n

Mn

n2
· einθ0 þM�

n

n2
· e−inθ0

�
· Fðθ1; θ2Þ; ð59Þ

where Fðθ1; θ2Þ is the undetermined function. The high-
order solutions v2 and v3 are very small and thus can be
neglected (i.e., v2 ¼ v3 ¼ 0). The undetermined function
Fðθ1; θ2Þ can be solved by eliminating the secular terms in
Eqs. (50) and (51), which yields

Fðθ1;θ2Þ¼C2 ·e
iðΛ2·θ1þQ2

v
2Λ2

·θ2Þ þC�
2 ·e

−iðΛ2·θ1þQ2
v

2Λ2
·θ2Þ: ð60Þ

Here, Λ2 can be expressed as

Λ2
2 ¼ 2

X
n

MnM�
n

n2
: ð61Þ

C2 and C�
2 are complex conjugated numbers determined

by the initial condition. After Fðθ1; θ2Þ is completely
determined, the expressions of v0 and v1 are determined.
Finally, the solution of the vertical oscillation [Eq. (39)]
follows by letting ε ¼ 1:

v ¼ v0 þ v1 þ � � �
¼ ðC2 · eiQzθ þ C�

2 · e
−iQzθÞ

·

�
1þ

X
n

Mn

n2
· einθ þM�

n

n2
· e−inθ

�
; ð62Þ

where

Qz ¼ Λ2 þ
Q2

v

2Λ2

ð63Þ

is the perturbed vertical tune and Λ2 is the tune shift
provided by the flutter field. Similar to Eqs. (36), (63) is
valid only if the flutter field is sufficiently large to satisfy

Qz > 0 (i.e., Λ2 >
ffiffiffiffiffiffiffi
−Q2

v
2

q
) because the derivation is based

TRANSVERSE OSCILLATION OF PARTICLES IN THE … PHYS. REV. ACCEL. BEAMS 22, 104001 (2019)

104001-7



on the assumption that the linear term is a higher-order
small quantity than the flutter term.
In order to verify the above formulas, we solved the

transverse oscillation equations for the SC200 cyclotron
with the fourth-order Runge-Kutta method and above
analytical formulas separately. Figures 3 and 4 compare
the results of these two methods; the good agreement
confirms the accuracy of the analytical formulas. We
note that the transverse oscillation is described by xðθÞ
and zðθÞ. After uðθÞ and vðθÞ are solved, xðθÞ and zðθÞ
can be obtained by the relations xðθÞ ¼ ffiffiffiffiffiffiffiffiffi

bðθÞp
· uðθÞ

and zðθÞ ¼ ffiffiffiffiffiffiffiffiffi
aðθÞp

· vðθÞ, which are derived in the
Appendix.

B. Transverse oscillation in unstable regions

1. 2Qr = 2 resonance

We consider the radial oscillation given by Eq. (37). The
unperturbed radial tune Qu is not equal to the perturbed
radial tune Qr; in order to consider the effect of the
perturbed radial tune, Eq. (37) is transformed to

u00 þQ2
r · u ¼ −gðθÞ · uþQ2

r · u −Q2
u · u: ð64Þ

Next, the small parameter ε is introduced as follows:

u00 þQ2
r · u ¼ −ε · gðθÞ · uþ ε2 · ðQ2

r −Q2
uÞ · u: ð65Þ

Then, the corresponding approximate equations are
obtained:

D2
0u0 þQ2

r · u0 ¼ 0; ð66Þ

D2
0u1 þ 2D0D1 · u0 þQ2

r · u1 ¼ −gðθÞ · u0: ð67Þ

The zeroth-order solution is easily obtained with
Eq. (66):

u0ðθ0; θ1Þ ¼ E1ðθ1Þ · eiQr·θ0 þ E�
1ðθ1Þ · e−iQr·θ0 : ð68Þ

By substituting Eq. (68) into Eq. (67), the first-order
approximate equation can be written as

FIG. 4. Betatron tunes from the numerical method (red) and analytical solutions (blue): (left) radial oscillation and (right) vertical
oscillation.

FIG. 3. Transverse oscillations obtained from the numerical method (red) and analytical solutions (blue) for a 100 MeV particle: (left)
radial oscillation and (right) vertical oscillation.
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D2
0u1 þQ2

r · u1 ¼ −2½iQr ·D1E1 · eiQrθ0 − iQr ·D1E�
1 · e

−iQrθ0 � −
�X

n

Pneinθ0 þ P�
ne−inθ0

�
· ½E1 · eiQrθ0 þ E�

1 · e
−iQrθ0 �:

ð69Þ

When the perturbed radial frequency is close to 1,
Qr → 1; the following term on the right-hand side of
Eq. (69) causes additional secular terms:

−2½iQr ·D1E1 · eiQrθ0 − iQr ·D1E�
1 · e

−iQrθ0 �
− P2E�

1 · e
ið2−QrÞθ0 − P�

2E1 · e−ið2−QrÞθ0 : ð70Þ

We introduce the detuning parameter σ1 to quantify the
proximity from the perturbed radial oscillation frequency
to 1:

2 −Qr ¼ Qr þ ε · σ1: ð71Þ

By substituting Eq. (71) into Eq. (70) and letting Eq. (70)
be zero to eliminate the secular terms, we get

D1E1ðθ1Þ ¼
iP2

2Qr
· eiσ1θ1 · E�

1ðθ1Þ;

D1E�
1ðθ1Þ ¼ − iP�

2

2Qr
· e−iσ1θ1 · E1ðθ1Þ: ð72Þ

In order to solve Eq. (72), we introduce the following
transformation:

E1ðθ1Þ ¼ Wðθ1Þ · eiσ1θ1=2;
E�
1ðθ1Þ ¼ W�ðθ1Þ · e−iσ1θ1=2: ð73Þ

By separating the real and imaginary parts, Eq. (72) can
be transformed into

d
dθ1

�
Wrðθ1Þ
Wiðθ1Þ

�
¼

0
B@ − P2i

2Qr

σ1
2
þ P2r

2Qr

− σ1
2
þ P2r

2Qr

P2i
2Qr

1
CA
�
Wrðθ1Þ
Wiðθ1Þ

�
;

ð74Þ

where WðθÞ ¼ WrðθÞ þ i ·WiðθÞ and P2 ¼ P2r þ i · P2i.
The characteristic equation of the above linear differential
equations can be written as

η2 − jP2j2
ð2QrÞ2

þ
�
σ1
2

�
2

¼ 0; ð75Þ

where η is the eigenvalue. When η2 < 0 (i.e., σ21 >
jP2j2
Q2

r
),

Eq. (74) has trigonometric form solutions. In this case,

Wrðθ1Þ and Wiðθ1Þ are bounded, and the system is stable.

When η2 > 0 (i.e., σ21 <
jP2j2
Q2

r
), Eq. (74) has exponent form

solutions:

Wrðθ1Þ ¼ C3 · eηθ1 þ C4 · e−ηθ1 ;

Wiðθ1Þ ¼
ηþ P2i

2Qr

σ1
2
þ P2r

2Qr

C3 · eηθ1 þ
−ηþ P2i

2Qr

σ1
2
þ P2r

2Qr

C4 · e−ηθ1 ; ð76Þ

where C3 and C4 are constants determined by the initial
condition. In this case, Wrðθ1Þ and Wiðθ1Þ are unbounded,
and the system is unstable. Thus, the stability condition
for the radial oscillation near 2Qr ¼ 2 is jσ1j > j P2

Qr
j; that

is, the radial oscillation near 2Qr ¼ 2 is stable only when
the distance to 2Qr ¼ 2 satisfies j2 − 2Qrj > εj P2

Qr
j.

Otherwise, the amplitude continuously increases, and the
system is unstable. After WðθÞ is solved, the coefficients
E1ðθ1Þ and E�

1ðθ1Þ can be completely determined from
Eq. (73). Then, the first-order solution can be expressed as

u1 ¼ −X
n≠2

PnE1

Q2
r − ðnþQrÞ2

· eiðnþQrÞθ0

þ PnE�
1

Q2
r − ðn −QrÞ2

· eiðn−QrÞθ0 þ P�
nE1

Q2
r − ðn −QrÞ2

· e−iðn−QrÞθ0 þ P�
nE�

1

Q2
r − ðnþQrÞ2

· e−iðnþQrÞθ0 : ð77Þ

Finally, by letting ε ¼ 1 in Eq. (43), a solution of
Eq. (37) near 2Qr ¼ 2 follows. The details are not
repeated here.
According to Eq. (68), the amplitude of the transverse

oscillation can be written as follows:

AmðθÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðθÞ · E�

1ðθÞ
q

: ð78Þ

The increasing rate of the amplitude is proportional to
eηθ; for every turn a particle rotates, its amplitude increases
approximately e2πη times. The driving term of the 2Qr ¼ 2
resonance is the second harmonic; a larger second har-
monic value will cause a faster increasing rate in the
amplitude growth. The left side of Fig. 5 shows the
relations between the perturbed radial tune Qr and increas-
ing rate e2πη for different second harmonic values; we can
also use this to find the resonance width near 2Qr ¼ 2. The
right side of Fig. 5 shows the transverse oscillation obtained
from the numerical integration and analytical formulas in
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the vicinity of 2Qr ¼ 2. The difference is very small, and
the amplitude variation coincides very well with the
description of Eq. (78).

2. Qz = 1=2 resonance

We consider the vertical oscillation equation given by
Eq. (38). The small parameter ε can be introduced as
follows:

v00 þQ2
z · v ¼ −ε · hðθÞ · vþ ε · JðθÞ · uv

þ ε2 · ðQ2
z −Q2

vÞ · v: ð79Þ

Two scales are considered: θ0 ¼ θ and θ1 ¼ ε · θ. The
corresponding approximate equations are

D2
0v0 þQ2

z · v0 ¼ 0; ð80Þ

D2
0v1 þQ2

z · v1 þ 2D0D1 · v0 ¼ −hðθÞ · v0 þ JðθÞ · u0v0:
ð81Þ

The zeroth-order approximation can be written as

v0ðθ0; θ1Þ ¼ F1ðθ1Þ · eiQzθ0 þ F�
1ðθ1Þ · e−iQzθ0 ; ð82Þ

where F1ðθ1Þ and F�
1ðθ1Þ are undetermined conjugated

complex functions. By substituting Eq. (82) into Eq. (81),
−hðθÞ · v0 and JðθÞ · u0v0 are written as

−hðθÞ · v0 ¼ −X
n

MnF1 · eiðnþQzÞθ0 þM�
nF1 · e−iðn−QzÞθ0 þMnF�

1 · e
iðn−QzÞθ0 þM�

nF�
1 · e

−iðnþQzÞθ0 ; ð83Þ

JðθÞu0v0 ¼ R0

h
E1F1 · eiðQrþQzÞθ0 þ E1F�

1 · e
iðQr−QzÞθ0 þ E�

1F1 · e−iðQr−QzÞθ0 þ E�
1F

�
1 · e

−iðQrþQzÞθ0
i

þ
X
n

Rn · E1F1 · eiðQrþQzþnÞθ0 þ Rn · E1F�
1 · e

iðQr−QzþnÞθ0 þ Rn · E�
1F1 · e−iðQr−Qz−nÞθ0

þ Rn · E�
1F

�
1 · e

−iðQrþQz−nÞθ0 þ R�
n · E1F1 · eiðQrþQz−nÞθ0 þ R�

n · E1F�
1 · e

iðQr−Qz−nÞθ0

þ R�
n · E�

1F1 · e−iðQr−QzþnÞθ0 þ R�
n · E�

1F
�
1 · e

−iðQrþQzþnÞθ0 : ð84Þ

As shown above, two cases need to be considered.
Case 1.—When Qz →

1
2
, then 1 −Qz → Qz. The term

M�
1F1 · e−ið1−QzÞθ0 þM1F�

1 · e
ið1−QzÞθ0 in Eq. (83) causes

additional secular terms.
Case 2.—When Qr−2Qz→1, then Qr −Qz − 1 → Qz.

The term R1 ·E�F1 ·e−iðQr−Qz−1Þθ0 þR�
1 ·EF

�
1 ·e

iðQr−Qz−1Þθ0
in Eq. (84) causes additional secular terms.
For case 1, the detuning parameter σ2 is introduced to

quantitatively describe the nearness of the perturbed
vertical tune to 1

2
:

1

2
−Qz ¼ ε ·

σ2
2
: ð85Þ

Substituting Eq. (85) into Eq. (83) and eliminating the
secular terms that occur in Eq. (81) yields the condition
for determining F1ðθ1Þ and F�

1ðθ1Þ as well as the stable
condition

jσ2j >
				 M1

2Qz

				: ð86Þ

FIG. 5. (Left) Relationship between the perturbed radial tune Qr and increasing rate of the amplitude e2πη for different second
harmonic values. (Right) Radial oscillations obtained by the numerical simulation and analytical solution.

ZHOU, SONG, CHEN, DING, and KARAMYSHEVA PHYS. REV. ACCEL. BEAMS 22, 104001 (2019)

104001-10



If jσ2j < j M1

2Qz
j, then the system is unstable. In this

case, the unbounded solutions of F1ðθ1Þ and F�
1ðθ1Þ are

obtained as

F1ðθ1Þ ¼ V1ðθ1Þ · e
iσ2θ1

2 ; F�
1ðθ1Þ ¼ V�

1ðθ1Þ · e−
iσ2θ1

2 ;

ð87Þ
where

V1rðθ1Þ ¼ C5 · eηθ1 þ C6 · e−ηθ1 ;

V1iðθ1Þ ¼
ηþ M1i

2Qz

σ2
2
þ M1r

2Qz

C5 · eηθ1 þ
−ηþ M1i

2Qz

σ2
2
þ M1r

2Qz

C6 · e−ηθ1 : ð88Þ

Here, V1ðθ1Þ ¼ V1rðθ1Þ þ i · V1iðθ1Þ, C5 and C6 are real
numbers determined by the initial condition, M1i and M1r
are the real and imaginary parts, respectively, of M1. With
the above procedure, the undetermined functions F1ðθ1Þ
and F�

1ðθ1Þ are completely determined. Then, v0ðθ0; θ1Þ
and v1ðθ0; θ1Þ can be determined. Finally, the solutions
of Eq. (38) follow by letting ε ¼ 1. The driving terms of
Qz ¼ 1

2
resonance is the first harmonic. In Fig. 6, the left

figure shows the unstable regions and resonance width near
Qz ¼ 1

2
for different first harmonic values. The right figure

is the comparison of the vertical motion obtained from the
numerical simulation and the analytical formulas under the
same initial condition; the difference is very small, which
proves the analytical formulas to be accurate.

3. Qr − 2Qz = 1 resonance

For case 2, a small parameter σ3 is introduced to
quantitatively describe the proximity of Qr − 2Qz to 1:

Qr − 2Qz − 1 ¼ ε · σ3: ð89Þ

Then, all terms that cause secular terms in Eq. (81) are
written as

−2iQz

�∂F1ðθ1Þ
∂θ1 · eiQzθ0 −∂F�

1ðθ1Þ
∂θ1 · e−iQzθ0

�

þ ½R�
1 ·EF

�
1 · e

iσ3θ1 · eiQzθ0 þR1 ·E�F1 · e−iσ3θ1 · e−iQzθ0 �:
ð90Þ

We let Eq. (90) be zero to eliminate the secular terms,
which results in

2
∂F1

∂θ1 · ðiQzÞ · eiQzθ0 ¼ R�
1 · EF

�
1 · e

iQzθ0 · eiσ3θ1 ;

2
∂F�

1

∂θ1 · ð−iQzÞ · e−iQzθ0 ¼ R1 · E�F1 · e−iQzθ0 · e−iσ3θ1 ;

ð91Þ

where E ¼ Eðθ2Þ and E� ¼ E�ðθ2Þ. The specific expres-
sions of E and E� are given in Eq. (54). Because θ2 varies
very slowly compared to θ0 and θ1, Eðθ2Þ and E�ðθ2Þ can
be treated as constants:

Eðθ2Þ ≈ C1 ¼ C1r þ i · C1i;

E�ðθ2Þ ≈ C�
1 ¼ C1r − i · C1i: ð92Þ

Here, C1r and C1i are real numbers that are directly
related to the initial radial amplitude. Similar to the
procedure described for Eqs. (73)–(75), Eq. (91) can be
transformed into linear differential equations by introduc-
ing a variable transformation, then the stable condition of
the system is obtained by solving the characteristic equa-
tion, which gives

jσ3j >
				R1 · C1

2Qz

				: ð93Þ

When jσ3j < j R1·C1

2Qz
j, the system is unstable; then,

Eq. (91) has an exponential form solution:

FIG. 6. (Left) Relationship between the perturbed vertical tune Qz and increasing rate e2πη for different first harmonic values near
Qz ¼ 1

2
. (Right) Vertical oscillations obtained by the numerical simulation and analytical solution.
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F1ðθ1Þ ¼ V2ðθ1Þ · e
iσ3 ·θ1

2 ; ð94Þ

where

V2r ¼ C7 · eηθ1 þ C8 · e−ηθ1 ;

V2i ¼
η − RrC1i−RiC1r

2Qz

σ3
2
− RrC1rþRiC1i

2Qz

· C7 · eηθ1

þ
−η − RrC1i−RiC1r

2Qz

σ3
2
− RrC1rþRiC1i

2Qz

· C8 · e−ηθ1 : ð95Þ

Here, V2r and V2i are real and imaginary parts of V2. C7

and C8 are constants determined by the initial condition.
Finally, the solutions of Eq. (38) nearQr − 2Qz ¼ 1 can be
obtained.
As presented above, the dynamic behavior of the vertical

oscillation near Qr − 2Qz ¼ 1 is related to not only the
values ofQr andQz and its driving term jR1j but also to the
initial radial amplitude jC1j. Figure 7 compares the vertical
oscillation of particles with initial radial amplitudes of 2
and 3 mm (the initial vertical amplitudes are the same).
Particles with a larger initial radial amplitude have a faster
increase in the vertical amplitude.

IV. CONCLUSION

We modified the MMS to obtain approximate analytical
solutions of the Mathieu equation in stable and unstable
regions for both δ ≥ 0 and δ < 0. Numerical simulations
were carried out to investigate the dynamic performance
of the Mathieu equation. Very good agreement was
obtained between the results of the numerical integration
and analytical solutions, which means that the modified
MMS is useful for obtaining the analytical solution of the
Mathieu equation.
The modified MMS was applied to the nonlinear trans-

verse oscillation equations of a cyclotron. The equations

of the transverse oscillation were derived and transformed
into the Mathieu equation. Analytical solutions were
obtained for the transverse oscillation in the stable and
unstable regions (i.e., vicinity of the resonances 2Qr ¼ 2,
Qz ¼ 1=2, and Qr − 2Qz ¼ 1). The validity of the ana-
lytical solutions was confirmed by a comparison with the
direct numerical integration results. Useful results such as
the analytical solution of the transverse oscillation fre-
quency, increasing rate of the amplitude in the unstable
regions, and resonance width were also derived, and the
driving terms and stability conditions were obtained from
the analytical results, which can help improve the under-
standing of the dynamics and provide a reference for the
design of a magnetic field for a cyclotron.
In this paper, we considered an ideal case without

magnetic imperfections. In other words, we assumed that
only the Bz component is nonzero in the middle plane.
Future studies could continue to explore this issue by
considering field imperfections. For example, the asym-
metry of magnetic sectors may lead to a Br component in
the middle plane. More coupling resonances can be studied
by taking into account the Br component. A more general
and practical situation could also be evaluated by consid-
ering the electric field.
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APPENDIX: DERIVATION OF THE
TRANSVERSE OSCILLATION EQUATIONS

The motion of particles in electromagnetic fields is
described by the well-known Lorentz force formula:

FIG. 7. Vertical oscillations obtained by the numerical method (red) and analytical formulas (blue) near Qr − 2Qz ¼ 1 with the same
vertical amplitude at initial radial amplitudes of (left) 2 mm and (right) 3 mm.
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F⃗ ¼ qv⃗ × B⃗þ qE⃗: ðA1Þ

In this study, the electric field was not considered. If the
azimuth θ is chosen as the independent variable and
Eq. (A1) is decomposed in a cylindrical coordinate system,
the equations of motion for charged particles in a static
magnetic field are obtained as follows:

r00 − 2r02

r
− r ¼ − q

P

�
1þ r02

r2
þ z02

r2

�1
2½ðr2 þ r02ÞBz

− r0z0Br − rz0Bθ�; ðA2Þ

z00 − 2r0z0

r
¼ q

P

�
1þ r02

r2
þ z02

r2

�1
2½ðr2 þ z02ÞBr

− r0z0Bz − rr0Bθ�; ðA3Þ

where P is the total momentum of a particle; r ¼ rðθÞ and
z ¼ zðθÞ are the radial and vertical coordinates, respec-
tively, describing the particle’s motion; the superscript
represents the derivation with respect to the independent
variable; and Br ¼ Brðr; θ; zÞ, Bθ ¼ Bθðr; θ; zÞ, and Bz ¼
Bzðr; θ; zÞ are the radial, azimuth, and vertical components,
respectively, of B⃗.
Cyclotron magnets have median plane symmetry.

Hence, only Bz is nonzero at z ¼ 0. Once the 2D numerical
field map of the vertical component in the middle plane
Bzðr; θ; zÞjz¼0 is given, the equilibrium orbit (i.e., closed
orbit in the middle plane) reðθÞ can be determined with
Gordon’s analytical formula [27] or the numerical pro-
cedure [28]. The magnetic field and equilibrium orbits for
the SC200 cyclotron are shown in Figs. 8 and 9.
The transverse oscillation is described by xðθÞ and zðθÞ.

These are defined as

xðθÞ ¼ rðθÞ − reðθÞ; zðθÞ ¼ zðθÞ − 0; ðA4Þ

where xðθÞ and zðθÞ are the radial and vertical displace-
ments, respectively, in relation to the equilibrium orbit.
Because the displacements xðθÞ and zðθÞ are usually small,
all of the terms in Eqs. (A2) and (A3) can be expanded in a
Taylor series around the equilibrium orbit. Then, transverse
oscillation equations that are accurate to the second order
are obtained as follows:

x00 þ AðθÞx0 þ BðθÞx
¼ C1ðθÞ · x2 þ C2ðθÞ · x02 þ C3ðθÞ · xx0
þ C4ðθÞ · zz0 þ C5ðθÞ · z02; ðA5Þ

z00 þ αðθÞz0 þ βðθÞz
¼ D1ðθÞ · xzþD2ðθÞ · xz0 þD3ðθÞ · x0z
þD4ðθÞ · x0z0: ðA6Þ

Coefficients such as AðθÞ and BðθÞ are functions of the
equilibrium orbit parameters, which have the same period
T ¼ 2π as the equilibrium orbit.
For a compact isochronous cyclotron such as the

SC200, all second-order terms in the radial equation such
as C1ðθÞ · x2 and C2ðθÞ · x02 have little effect on a particle’s
motion. All second-order terms in the vertical equation
except for D1ðθÞ · xz also have little effect on the particle’s
motion. This is because x0 and z0 are smaller than x and z by
an order of magnitude or more for the SC200 cyclotron; x0

and z0 are approximately 0 ∼ 10−3 m=rad, while x and z are
approximately 0–10−2 m. Consequently, the second-order
terms with the exceptions of D1ðθÞ · xz and C1ðθÞ · x2 can
be treated as high-order terms. Moreover, the mean value of
BðθÞ is larger than that of βðθÞ by an order of magnitude
or more, which indicates that the linear part of the radial
oscillation BðθÞ · x is strong and its response to the non-
linear terms is weak. Meanwhile, the linear part of the
vertical oscillation βðθÞ · z is weaker and more susceptible
to the influence of the nonlinear term. By ignoring all terms
on the right side of Eqs. (A5) and (A6) except for
D1ðθÞ · xz, the transverse oscillation equations can be
simplified as follows:

x00 þ AðθÞx0 þ BðθÞx ¼ 0; ðA7Þ

z00 þ αðθÞz0 þ βðθÞz ¼ D1ðθÞ · xz: ðA8Þ

Equations (A7) and (A8) are Hill-type differential
equations and can be further simplified by introducing
two parameters:

aðθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e þ r02e

q
; bðθÞ ¼ ðr2e þ r02e Þ32

r2e
: ðA9Þ

Then, Eqs. (A5) and (A6) can be written as

x00 − b0ðθÞ
bðθÞ x

0 þ BðθÞx ¼ 0; ðA10Þ

z00 − a0ðθÞ
aðθÞ z

0 þ βðθÞz ¼ D1ðθÞ · xz: ðA11Þ

The following transformation can be applied:

x ¼
ffiffiffiffiffiffiffiffiffi
bðθÞ

p
· u; z ¼

ffiffiffiffiffiffiffiffiffi
aðθÞ

p
· v: ðA12Þ

Then, Eqs. (A10) and (A11) can be further simplified as

u00 þGðθÞ · u ¼ 0; ðA13Þ

v00 þHðθÞ · v ¼ JðθÞ · uv; ðA14Þ
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where GðθÞ¼ b00
b − 3

4
ðb0bÞ2þBðθÞ, HðθÞ¼ a00

a − 3
4
ða0aÞ2þβðθÞ,

and JðθÞ ¼ ffiffiffiffiffiffiffiffiffi
bðθÞp

·D1ðθÞ. These three coefficients are
periodic and have the same period T ¼ 2π as the equilib-
rium orbit. Expanding the coefficients into Fourier series
gives

GðθÞ ¼ Q2
u þ

X
n

Pneinθ þ P�
ne−inθ; ðA15Þ

HðθÞ ¼ Q2
v þ

X
n

Mneinθ þM�
ne−inθ; ðA16Þ

JðθÞ ¼ R0 þ
X
n

Rneinθ þ R�
ne−inθ: ðA17Þ

For simplification, we let gðθÞ ¼ P
n Pneinθ þ P�

ne−inθ
and hðθÞ ¼ P

n Mneinθ þM�
ne−inθ. Then, Eqs. (A13)

and (A14) become

FIG. 8. (Left) 2D magnetic field map in the middle plane for the SC200 cyclotron. (Right) Magnetic field with respect to the azimuth
for different radii.

FIG. 9. Equilibrium orbits for the SC200 cyclotron.

FIG. 10. Coefficients gðθÞ, hðθÞ, and JðθÞ for different energy particles.
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u00 þQ2
u · u ¼ −gðθÞ · u; ðA18Þ

v00 þQ2
v · v ¼ −hðθÞ · vþ JðθÞ · uv: ðA19Þ

With the above procedure, the original transverse oscil-
lation equations are transformed into Mathieu-type equa-
tions [Eqs. (A18) and (A19)]. The details of the coefficients
of Eqs. (A18) and (A19) are given in Figs. 10 and 11.

[1] R. S. Zounes and R. H. Rand, Transition curves for the
quasi-periodic Mathieu equation, SIAM J. Appl. Math. 58,
1094 (1998).

[2] T. Insperger and G. Stepan, Stability of the damped
Mathieu equation with time delay, J. Dyn. Syst., Meas.,
Control 125, 166 (2003).

[3] D. Younesian, E. Esmailzadeh, and R. Sedaghati, Asymp-
totic solutions and stability analysis for generalized non-
homogeneous Mathieu equation, Commun. Nonlinear Sci.
Numer. Simul. 12, 58 (2007).

[4] V. Ramakrishnan and B. F. Feeny, Resonances of a forced
Mathieu equation with reference to wind turbine blades,
J. Vib. Acoust. 134, 064501 (2012).

[5] M. H. Holmes, Introduction to Perturbation Methods
(Springer Science & Business Media, New York, 2012).

[6] K. Zhou, Y. T. Song, K. Z. Ding, J. Ge, and K. Yao,
Analytical solution of transverse oscillation in cyclotron
using LP method, Chin. Phys. C 42, 037001 (2018).

[7] E. Salahshoor, S. Ebrahimi, and M. Maasoomi, Nonlinear
vibration analysis of mechanical systems with multiple
joint clearances using the method of multiple scales,
Mech. Mach. Theory 105, 495 (2016).

[8] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations
(John Wiley & Sons, New York, 2008).

[9] J. C. Li and X. C. Zhou, Asymptotic Methods in Math-
ematical Physics, 1st ed. (Science Press, Beijing, 1998).

[10] S. H. Chen, The Definite Quantitative Methods for
Strongly Non-linear Vibration, 1st ed. (Guangdong
Science and Technology Press, Guangzhou, 2004).

[11] S. Fan, Y. Li, Z. Guo, J. Li, and H.-H. Zhuang, Dynamic
characteristics of resonant gyroscopes study based on the

Mathieu equation approximate solution, Chin. Phys. B 21,
050401 (2012).

[12] T. J. Zhang, H. J. Yao, J. J. Yang, J. Q. Zhong, and S. Z. An,
The beam dynamics study for the CYCIAE-100 cyclotron,
Nucl. Instrum. Methods Phys. Res., Sect. A 676, 90
(2012).

[13] T. J. Zhang, M. Li, J. Q. Zhong, S. Z. An, and S. M. Wei,
Beam dynamics study for a small, high current 14 MeV
PET cyclotron, Nucl. Instrum. Methods Phys. Res., Sect. A
269, 2955 (2011).

[14] M. Biagini, M. Boscolo, and M. Ferrario, Beam dynamics
studies for the SPARC project, in Proceedings of the 2003
Particle Accelerator Conference, Portland, OR (IEEE,
New York, 2003).

[15] D. D. Caussyn, M. Ball, B. Brabson et al., Experimental
studies of nonlinear beam dynamics, Phys. Rev. A 46, 7942
(1992).

[16] L. H. Yu, Analysis of nonlinear dynamics by square matrix
method, Phys. Rev. Accel Beams 20, 034001 (2017).

[17] G. A. Karamysheva and S. A. Kostromin, Beam dynamics
study in the C235 cyclotron for proton therapy, Phys. Part.
Nucl. Lett. 6, 84 (2009).

[18] A. Wolski and A. T. Herrod, Explicit symplectic integrator
for particle tracking in s-dependent static electric and
magnetic fields with curved reference trajectory, Phys.
Rev. Accel. Beams 21, 084001 (2018).

[19] M. M. Gordon, Fixed-point orbits in the vicinity of the
vr ¼ N=3, N=4, and N=2 resonances, Nucl. Instrum.
Methods 18, 281 (1962).

[20] D. Jeon and M.M. Gordon, Coupling effects at the vz ¼
3=4 resonance in a three-sector superconducting cyclotron,
Nucl. Instrum. Methods Phys. Res., Sect. A 349, 1 (1994).

[21] C. J. A. Corsten and H. L. Hagedoorn, Simultaneous treat-
ment of betatron and synchrotron motions in circular
accelerators, Nucl. Instrum. Methods Phys. Res. 212, 37
(1983).

[22] Y. Jongen, W. Beeckman, W. Kleeven, D. Vandeplassche,
S. Zaremba, E. Samsonov, and N. Morozov, Numerical
study of the resonance in superconducting cyclotron C400,
in Proceedings of the 18th International Conference on
Cyclotrons and their Applications (L.A.C. Piazza, INFN -
LNS, Catania, 2007).

[23] W. Kleeven and H. Hagedoorn, The influence of magnetic
field imperfections on the beam quality in a H− cyclotron,

FIG. 11. Values of (left) Q2
u − 1 and Q2

v, (middle) the Fourier coefficients of gðθÞ, and (right) the Fourier coefficients of JðθÞ for
different energy particles.

TRANSVERSE OSCILLATION OF PARTICLES IN THE … PHYS. REV. ACCEL. BEAMS 22, 104001 (2019)

104001-15

https://doi.org/10.1137/S0036139996303877
https://doi.org/10.1137/S0036139996303877
https://doi.org/10.1115/1.1567314
https://doi.org/10.1115/1.1567314
https://doi.org/10.1016/j.cnsns.2006.01.005
https://doi.org/10.1016/j.cnsns.2006.01.005
https://doi.org/10.1115/1.4006183
https://doi.org/10.1088/1674-1137/42/3/037001
https://doi.org/10.1016/j.mechmachtheory.2016.07.020
https://doi.org/10.1088/1674-1056/21/5/050401
https://doi.org/10.1088/1674-1056/21/5/050401
https://doi.org/10.1016/j.nima.2012.02.027
https://doi.org/10.1016/j.nima.2012.02.027
https://doi.org/10.1016/j.nimb.2011.04.050
https://doi.org/10.1016/j.nimb.2011.04.050
https://doi.org/10.1103/PhysRevA.46.7942
https://doi.org/10.1103/PhysRevA.46.7942
https://doi.org/10.1103/PhysRevAccelBeams.20.034001
https://doi.org/10.1134/S1547477109010130
https://doi.org/10.1134/S1547477109010130
https://doi.org/10.1103/PhysRevAccelBeams.21.084001
https://doi.org/10.1103/PhysRevAccelBeams.21.084001
https://doi.org/10.1016/S0029-554X(62)80036-6
https://doi.org/10.1016/S0029-554X(62)80036-6
https://doi.org/10.1016/0168-9002(94)90600-9
https://doi.org/10.1016/0167-5087(83)90674-9
https://doi.org/10.1016/0167-5087(83)90674-9


in Proceedings of the 13th International Conference
on Cyclotrons and their Applications (World Scientific,
Singapore, 1993).

[24] E. D. Courant and H. S. Snyder, Theory of the alternating-
gradient synchrotron, Ann. Phys. (N.Y.) 281, 360 (2000).

[25] J. Y. Tang and B.W.Wei, Theory and Design of Cyclotrons
(University of Science and Technology of China Press,
Hefei, 2008).

[26] G. Karamysheva, Y. Bi, G. Chen et al., Compact
Superconducting Cyclotron SC200 for proton therapy, in

Proceedings of the 21st International Conference on Cyclo-
trons and their Applications, Zurich, Switzerland (JACoW,
Geneva, Switzerland, 2016), https://doi.org/10.18429/JA-
CoW-Cyclotrons2016-MOP14.

[27] M. M. Gordon and D. O. Jeon, Improved formulas for
calculating cyclotron orbit properties, Nucl. Instrum.
Methods Phys. Res., Sect. A 301, 182 (1991).

[28] M. M. Gordon, Computation of closed orbits and basic
focusing properties for sector-focused cyclotrons and the
design of “cyclops”, Part. Accel. 16, 39 (1984).

ZHOU, SONG, CHEN, DING, and KARAMYSHEVA PHYS. REV. ACCEL. BEAMS 22, 104001 (2019)

104001-16

https://doi.org/10.1006/aphy.2000.6012
https://doi.org/10.18429/JACoW-Cyclotrons2016-MOP14
https://doi.org/10.18429/JACoW-Cyclotrons2016-MOP14
https://doi.org/10.1016/0168-9002(91)90458-3
https://doi.org/10.1016/0168-9002(91)90458-3

