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ARTICLE
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Nelder-Mead simplex algorithm
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cJoint Institute for Nuclear Research, Dubna, Russia

ABSTRACT
In this paper, we propose a numerical method for ideal isochronous field calculation for the
SC200 isochronous cyclotron based on the Nelder-Mead simplex algorithm. In this method,
the radial field distribution is represented by an nth-order polynomial, an objective function is
defined to describe the relative error of the orbital frequency, and the ideal isochronous field
is calculated by optimizing the coefficients of the polynomial to minimize the objective
function using the Nelder-Mead simplex algorithm. A comparative analysis of the proposed
method and conventional methods indicates that the proposed method provides a more
accurate ideal isochronous field, especially in the vicinity of the extraction region where the
field flutter is large.
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1. Introduction

In recent years, many compact cyclotrons have been
built for the purpose of ion therapy. The SC200
cyclotron is a superconducting proton cyclotron
used for proton therapy; it can accelerate protons to
200 MeV [1]. SC200 has four spiral sectors; the mean
magnetic field is approximately 2.95 T in the central
region and 3.6 T in the extraction region, the extrac-
tion radius is approximately 60 cm, and the orbital
frequency is 45.75 MHz. The details of the para-
meters of the SC200 cyclotron are listed in Table 1.

One of the factors that limit higher energy output
in a classical cyclotron is the phase slip caused by the
relativistic effect. In an isochronous cyclotron, the
mean magnetic field (the azimuthally averaged com-
ponent in the mid-plane) increases with the energy of
the particles and maintains a constant orbital fre-
quency to overcome the phase slip problem. The
mean magnetic field that keeps the orbital frequency
constant is called an ideal isochronous field.

As an analytical approximation to calculate the
ideal isochronous field in cyclotrons, Gordon’s
method has been proposed and applied for many
years [2–4]. Gordon’s method is highly effective,
with a small requirement of computational resources,
and is highly accurate in the low-flutter area.
However, it is well known that Gordon’s method
cannot provide accurate results when the field flutter
increases, because this method is based on the
assumption that the equilibrium orbit of the particles
deviates slightly from a circular orbit.

With the improvements in microcomputing per-
formance in calculating speed and memory capacity,
it has become possible to achieve a more accurate
ideal isochronous field by a numerical calculation. In
Ref [5]., a numerical method (the gyration frequency-
based method) was proposed. The accuracy in the
low-flutter area was greatly improved with this
method; however, although the accuracy in the large-
flutter area can meet the requirements of the physical
design, it is still not very high and can be improved.
In this study, we developed a numerical procedure
that results in a comparatively higher accuracy for the
calculation of the ideal isochronous field, especially in
the vicinity of the extraction area where the flutter is
large.

There are two steps in achieving field isochronism
for the SC200 cyclotron. The ideal isochronous field
calculation is the first step; after the ideal isochronous
field has been determined, the shimming process is
performed to realize the ideal isochronous field by
adjusting the sector geometry or by trim coils [6–9].
Magnet shimming is commonly an iterative process,
in which the real mean magnetic field is compared
with the ideal isochronous field to evaluate the quality
of the isochronism in each iteration, and the error
between the ideal isochronous field and the real mean
magnetic field encourages further shimming in the
next iteration. Both the quality of the shimming pro-
cess and the quality of the ideal isochronous field are
important for the isochronism; the value of improv-
ing the ideal isochronous field is that it can guide the
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subsequent shimming processes and improve the iso-
chronism for the SC200 cyclotron.

2. Calculation process

There are two input parameters for the isochronous
field calculation. One is the flutter field, and the other
is the required orbital frequency. Prior to the calcula-
tion, a previously calculated or measured 2D mag-
netic field map in the middle plane B r; θð Þ should be
given. The 2D magnetic field map B r; θð Þ is com-
posed of the mean field component B0 rð Þ and the
flutter field component f r; θð Þ:

B r; θð Þ ¼ B0 rð Þ þ f r; θð Þ (1)

where

f r; θð Þ ¼
X

n¼1;2;3���
An rð Þ � sin nθþ Bn rð Þ � cos nθ (2)

As an input parameter, the flutter field does not
change in the calculation process; our algorithm
searches for a suitable radial field distribution B0 rð Þ
that matches the flutter field f r; θð Þ to let the orbital
frequencies approach the required constant value
along the equilibrium orbits. In order to improve
the accuracy, one can also scale up and down the
flutter field linearly according to the mean field value
B0 rð Þ for each radius. Choosing a constant flutter
field or a variable flutter field does not affect the
calculation process. We chose a constant flutter in
our algorithm for convenience.

As an example, the previously calculated map of
the magnetic field was derived from the SC200 cyclo-
tron using a finite element method (FEM) simulation.
The flutter field is shown in Figure 1. The required
orbital frequency for the SC200 cyclotron
is f0 ¼ 45:75MHz.

The radial field distribution can be expanded into
an nth-order polynomial:

B0i rð Þ ¼ a0 þ a1 � r � rminð Þ þ a2 � r � rminð Þ2 þ � � �
þ aN � r � rminð ÞN

(3)

For a given set of the coefficients a0; a1; a2 � � � aNð Þ,
one can calculate the radial field distribution B0i rð Þ

and then obtain the corresponding 2D field map
Bi r; θð Þ. In each 2D field map, a number of equili-
brium orbits are simulated to obtain the orbital fre-
quency at different energies. Then, we define an
objective function to describe the frequency error:

F B0i rð Þf g ¼ max fn � f0ð Þj j (4)

or equivalently,

F a0; a1; � � � ; aNð Þ ¼ max fn � f0ð Þj j (5)

where n denotes the energy steps, and fn ¼ f Enð Þ
denotes the orbital frequency of the particles at
energy En for the given coefficients. It is evident
that F � 0, and the objective function reaches
a minimum (0) when the magnetic field B0i rð Þ is
an ideal isochronous field. The magnitude of
objective function values greater than the specified
tolerance limit means that the magnetic field is
different from the ideal isochronous field and
hence it needs to be corrected by modifying the
aN values. Therefore, the physical problem of
determining the ideal isochronous field is trans-
formed into the mathematical problem of finding
the minimum value of the objective function
F a0; a1; � � � ; aNð Þ; the Nelder-Mead simplex method
is a simple and effective method for this optimiza-
tion problem.

The Nelder-Mead simplex method, also called
the simplex method, is a commonly used direct
search method to minimize a function of multiple
variables for which derivatives may not be known.
This method uses the concept of a simplex, which
is a special polytope of n + 1 vertices in n dimen-
sions. Examples of simplexes include a line seg-
ment on a line, a triangle on a plane,
a tetrahedron in three-dimensional space, and so
forth. The simplex method in n dimensions (nth-
order simplex method) maintains a set of n + 1
test points arranged as a simplex. Four possible
operations (reflection, expansion, contraction, and

Table 1. Main parameters of the SC200 cyclotron.
Parameters Value

Average magnetic field (central/extraction) 2.95/3.64 T
Minimun/Maximun field 2.8/4.6 T
Number of sectors 4
Pole diameter 1.24 m
Extraction energy 200 MeV
Extraction radius 0.604 m
Maximum spiral angle 65°
Harmonic number 2
RF frequency 91.5 MHz

Figure 1. Overview of the flutter field of the SC200 cyclotron.
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shrink) are performed on the simplex according to
the objective function values measured at each test
point. A new simplex that has superior vertices
will be formed in each iteration. Finally, the sim-
plex can converge to the optimal solution after
several iterations.

One can start with a set of arbitrary reasonable
aN values and generate the initial simplex, but in
order to improve the convergence speed, it is pre-
ferable to choose an initial simplex near the opti-
mal solution; thus, we choose the mean field B0g rð Þ
obtained from Gordon’s method and use the cor-
responding aN values to generate the first vertex
and the initial simplex. Considering the coeffi-
cients a0; a1; a2 � � � aNð Þas the first vertex of the
initial simplex X0 ¼ a0; a1; a2; � � � aNð Þ, the other
n vertexes of the initial simplex can be written

X1 ¼ a0; a1 þ Δa1; a2; � � � ; aNð Þ
X2 ¼ a0; a1; a2 þ Δa2; � � � ; aNð Þ
� � � � � �
XN ¼ a0; a1; a2 � � � ; aN þ ΔaNð Þ

8>><
>>: (6)

in which the values of Δa1;Δa2; � � � ;ΔaN can be
determined by

Δai ¼ ΔBi

rmax � rminð Þi (7)

where ΔBi is the magnetic field error at the maximum
radius. The selection of ΔBi is arbitrary; for example,
ΔB1 ¼ 4Gsand ΔB2 ¼ 5Gscan be selected.

The iterative process of the simplex method has
been described in many papers [10–12]. The itera-
tive process starts from the initial simplex, and the
N + 1 vertices of the initial simplex are ranked
from lowest to highest function values. The vertex
with the lowest function value is Xl ¼
a0; al1; � � � alNð Þ (the best point), the vertex with
the second-highest function value is Xm ¼
a0; am1; � � � amNð Þ (the middle point), and the vertex
with the highest function value is Xh ¼
a0; ah1; � � � ; ahNð Þ (the worst point), which satisfies
F Xlð Þ< F Xmð Þ< F Xhð Þ. Then, the centroids of all
vertices excluding Xh can be defined as

Xc ¼ 1
n

Xn
i¼0

Xi � Xh

" #
: (8)

Generally, the optimal solution is in the opposite direc-
tion of Xh; the reflection point can be defined as Xr:

Xr ¼ Xc þ α Xc � Xhð Þ: (9)

Usually, we select 1 � α � 1:5, where α is the
reflection coefficient. We calculate the value of the
objective function F Xrð Þ at Xr and compare it with
the function calculated at the other three points Xl,
Xm, Xh, which results in four possible situations:

(1) The reflection point Xr is better than the best
point Xl:

F Xrð Þ< F Xlð Þ< F Xmð Þ< F Xhð Þ
(2) The reflection point Xr is worse than the best

point Xl but better than the middle point Xm:

F Xlð Þ< F Xrð Þ< F Xmð Þ< F Xhð Þ
(3) The reflection point Xr is worse than the mid-

dle point Xm but better than the worst point Xh:

F Xlð Þ< F Xmð Þ< F Xrð Þ< F Xhð Þ
(4) The reflection point Xr is worse than the worst

point Xh:

F Xlð Þ< F Xmð Þ< F Xhð Þ< F Xrð Þ
Four possible operations (expansion, outside con-

traction, inside contraction, and shrink) are per-
formed on the simplex according to each specific
situation, and a new simplex that has superior ver-
tices is obtained. The optimal solution can be
obtained after several iterations. Finally, the isochro-
nous mean field Bsimp

0 rð Þ can be constructed by using

the best vertex of the final simplex ~Xl:

Bsimp
0 rð Þ ¼ a0 þ al1 � r � rminð Þ þ al2 � r � rminð Þ2

þ � � � alN � r � rminð ÞN
(10)

and the corresponding 2D field map in the mid-plane
is reconstructed by adding the mean field component
to the flutter field:

Bsimp r; θð Þ ¼ Bsimp
0 rð Þ þ f r; θð Þ (11)

The flow charts of the calculation process is shown in
Figures 2 and 3.

To improve the calculation accuracy and speed,
the entire computational domain can be divided

Figure 2. Flow chart for the Nelder-Mead simplex method.
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into several small intervals; then, the isochronous
field is calculated in each small interval in sequence.
For example, the whole computational domain for
the SC200 cyclotron is R ¼ 10,60:4cm; we divided
it into three small intervals, R ¼ 10,35cm,
R ¼ 35,50cm, and R ¼ 50,60:4cm. The first calcu-
lation is performed in the interval R ¼ 10,35cm, the
2D field map obtained from the first calculation is
further used as the input parameters for the second
calculation in the interval R ¼ 35,50cm, and so
forth.

3. Comparison with traditional methods

To verify the performance of the proposed method,
we compared it with Gordon’s method and the gyra-
tion frequency-based method. The 8th-, 10th-, and

12th-order simplex methods, Gordon’s method, and
the gyration frequency-based method were used to
compute the ideal isochronous field under the same
initial conditions.

A comparison of the results from Gordon’s
method, the gyration frequency-based method, and
the 12th-order simplex method is shown in Figures 4–
7, and a comparison of the accuracy and time cost
using different-order simplex methods is shown in
Figure 8.

As seen in Figures 4 and 5, the results from the
three methods are quite similar; the difference
between the results from these three methods is
nearly zero in the small-flutter area
(R = 0–55 cm), but the difference increases to
approximately 10–40 Gs in the large-flutter area
(R = 55–60.4 cm). With the improvement of the

Figure 3. Flow chart for calculating the objective function.

Figure 4. Comparison of the isochronous field obtained from Gordon’s method, the gyration frequency-based method, and the
12th-order simplex method.

Figure 5. Difference between the isochronous field obtained from Gordon’s method, the gyration frequency-based method, and
the 12th-order simplex method.

220 K. ZHOU ET AL.



2D field measurement technique and shimming
technique, the accuracy of the mean field can
reach 10−4 in engineering; the correction provided
by the proposed method is approximately 10−3 (40
Gs/36,000 Gs). Thus, the correction is quite large
and should not be ignored, and this result can be
useful for guiding the shimming process.

As shown in Figure 6, the relative error in the orbital
frequency is small for all three methods in the interval
of Ek < 150MeV, but the error from Gordon’s method
and the error from the gyration frequency-based
method increase in the extraction region
(Ek > 170MeV) (approximately 0.0150%), whereas the
error is quite small in the extraction region for the 12th-

Figure 6. Relative error in the orbital frequency of Gordon’s method, the gyration frequency-based method, and the 12th-order
simplex method.

Figure 7. Comparison of the integrated phase slip during acceleration from 150 MeV to 200 MeV.

Figure 8. Time cost for different-order simplex methods (left), and the value of the objective function for different-order simplex
methods during the iterations (right).
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order simplex method (approximately 0.0010%). As
shown in Figure 7, the integrated phase slip is approxi-
mately 10° for Gordon’s method, approximately 2° for
the gyration frequency-based method, and nearly 0° for
the simplex method during acceleration from 150 MeV
to 200 MeV (the energy gain is approximately
0.25 MeV per turn). Both of these results show sub-
stantial improvement in the field isochronism, which
proves that the proposed method is highly useful in
calculating the ideal isochronous field.

We also evaluated the performance of the pro-
posed method by comparing the calculation speed
for different-order simplex methods. We wrote
MATLAB code for the ideal isochronous field calcu-
lation. This code runs on a workstation with 28 CPU
cores using the parallel computing technique. The
time cost and accuracy using different-order simplex
methods are shown in Figure 8.

The calculation speed of the codes depends mainly
on the efficiency of searching the equilibrium orbits.
The order of the simplex methods has little effect on
the calculation speed; a higher-order simplex method
will not increase the time cost. In our example, the
equilibrium orbits were calculated using Gordon’s
procedure [13] with an azimuth step of 0.5°, the
convergence accuracy of the equilibrium orbits is
10�6m. It takes approximately 1200 s to complete
100 iterations and 2400 s to complete 200 iterations.
A lower objective function value suggests a more
accurate isochronous field. The objective function
value at the 200th iteration decreases with an increase
in the simplex order, which indicates that a higher-
order simplex method improves the accuracy of the
isochronous field calculation.

Because the proposed method must solve a large
number of equilibrium orbits in the calculation
process, it is computationally expensive, and the
time cost is large. Although the computational effi-
ciency is not high, the time cost is less than
one hour with the help of the parallel computing
technique, which is still acceptable; thus, this pro-
posed method is effective for the ideal isochronous
field calculation.

4. Application

The results of the proposedmethod can be applied in the
shimming process. In general, magnet shimming is an
iterative process containing twomain steps: 1) qualify the
isochronous error, and 2) predict the magnet pole shape
modification according to the isochronous error.

In the first step, the ideal isochronous field can be
used to evaluate the isochronous error:

ΔB rð Þ ¼ B rð Þ � Biso rð Þ (12)

where B rð Þ is the measured or calculated mean field,
and Biso rð Þ is the ideal isochronous field given by the
proposed method.

In the second step, the correlation matrix method
[6, 8] is used to transform the isochronous error to
pole geometry modification. In this method, we cut
several rectangle patches from the pole edge at every
radius to shim the isochronous field. The field change
can be assumed to be the sum of the field change with
every individual rectangle removed. The influence on
the mean field of individual patches at radius r ¼ ri is
referenced as ai rð Þ, which is pre-calculated in each
radius with a radius step of Δr ¼ 1cm using the FEM
simulation. Then, the field change is

ΔB rð Þ ¼
X

Wi � ai rð Þ; (13)

where i denotes the radius steps, and Wi is the width
of the patch at ri. The least-square method is
employed to solve Wi, and then the pole geometry
is adjusted in accordance with the Wi values.

In the SC200 cyclotron, one degree of angle width is
reserved on both sides of the pole for shimming; the
structure of the SC200 poles and the angular width of
the poles before and after shimming is shown in Figure 9.

5. Summary

In this paper, we describe a numerical method for calcu-
lating the ideal isochronous field for the SC200 cyclotron.
In this method, the radial field distribution is represented
by an nth-order polynomial, an objective function is
defined to describe the relative error of the orbital

Figure 9. Overview of the pole structure for SC200 (left), starting and optimized pole geometry (middle), and the angular width
of the poles before and after shimming (right).
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frequency, and the ideal isochronous field is calculated by
optimizing the coefficients of the polynomial to mini-
mize the objective function using the Nelder-Mead sim-
plex algorithm.

The obtained result was compared with the isochro-
nous fields computed by Gordon’s method and the
gyration frequency-based method. The relative fre-
quency error and the integrated phase slip were used
as the field quality criteria. The relative error in the
orbital frequency in the large-flutter area improved
from 0.0150% to 0.0010%, and the integrated phase
slip improved from 10° to nearly 0° by using the 12th-
order simplex method for the SC200 cyclotron, which
proves that the proposed method can yield a more
accurate ideal isochronous field, especially in large-
flutter areas such as the vicinity of the extraction radii.

The ideal isochronous field calculation is the first
step in achieving isochronism for the SC200 cyclotron;
after the ideal isochronous field is obtained, the real
mean field is modified to approach the ideal isochro-
nous field by adjusting the sector geometry in the
shimming process. Both the quality of the ideal iso-
chronous field and the quality of the shimming process
are highly important for the isochronism.

The shimming technique has been greatly improved
in recent years; however, the calculation of the ideal
isochronous field is not commonly discussed. This
paper presents an improvement in the ideal isochro-
nous field calculation, which is helpful for improving
the field isochronism for the SC200 cyclotron.
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