Аннотация

проект СОМЕТ

Поиск когерентной безнейтринной µ -е конверсии на J-PARC

ЛЯП: В.Н. Дугинов, К.И. Грицаи, И.Л. Евтухович, П.Г. Евтухович, В.А. Калинников, Х. Хубашвили, Е.М. Кулиш, А.С. Моисеенко, Б. М. Сабиров, А.Г. Самарцев, Ю.Ю. Степаненко, З. Цамалаидзе, Н. Цверава, Е.П. Величева, А.Д. Волков

ЛФВЭ: В.В. Елша, Т.Л. Еник, С.А. Мовчан, С.Н. Шкаровский

ЛТФ: Ш. Биланишвили, Г.А. Козлов

ЛИТ: Г. Адамов, Т. Джавахишвили, А. Хведелидзе

Руководитель проекта

E-mail: <u>zviadi@jinr.ru</u>

3. Цамалаидзе

Проект СОМЕТ был одобрен в ОИЯИ на программном комитете по ядерной физике в 2014 году на период 2014-2016 гг. Ниже представлены результаты нашей активности и задачи, связанные с продлением проекта на 2017-2019 гг.

1. Физическая мотивация

Проект COMET (COherent Muon to Electron Transition) - это эксперимент по поиску когерентной безнейтринной конверсии мюона в электрон в присутствии ядра ($\mu^- \to e^-$ конверсия), $\mu^- + N(A, Z) \to e^- + N(A, Z)$, с чувствительностью регистрации одного события $Br(\mu-N \to e^- N) \sim 10^{-17}$.

Переходы между заряженными лептонами с различными ароматами (Charged Lepton Flavor Violation, CLFV) способны сигнализировать об обнаружении явлений новой физики за пределами стандартной модели (СМ). Многие модели такой физики, базирующиеся на суперсимметричном великом объединении, суперсимметричных качелях и экстра-пространствах, требующие нарушения сохранения лептонных зарядов (ароматов), становятся доступными для проверки в будущих экспериментах.

В рамках существующей Стандартной модели относительная вероятность μ - e конверсии меньше чем 10^{-50} , что далеко за пределами возможностей экспериментального поиска. Поэтому наблюдение может быть ясным сигналом существования новой физики за пределами стандартной модели. Измерение $\mu^- \rightarrow e^-$ конверсии на уровне

 $< 10^{-16}$, что и является целью проекта СОМЕТ, в 10^4 раз улучшит существующую экспериментальную границу.

Помимо $\mu^- \to e^-$ конверсии имеются два других процесса, нарушающих закон сохранения лептонного заряда для заряженных лептонов, это распады $\mu \to e \gamma$ и $\mu \to e e e$. Ожидается, что относительная вероятность $\mu^- \to e^-$ конверсии и $\mu \to e e e$ распада меньше относительной вероятности распада $\mu \to e \gamma$ из-за электромагнитного взаимодействия виртуального фотона. Поэтому поиск $\mu^- \to e^-$ конверсии и $\mu \to e e e$ распада на уровне 10^{-16} соответствует поиску распада $\mu \to e \gamma$ на уровне 10^{-14} . Диаграммы, описывающие эти процессы различны, поэтому эти три процесса имеют различную чувствительность к моделям за пределами стандартной. Таким образом указанные три процесса являются взаимно комплиментарными.

Когда отрицательный мюон останавливается в каком-либо материале, он захватывается атомом и образуется мюонный атом. Далее мюон может распасться на орбите $\mu^- \to e^- v_\mu \overline{v}_e$) или быть захвачен ядром с массовым числом A и атомным номером Z с испусканием нейтрино $\mu^- + N(A,Z) \to v_\mu + N(A,Z-1)$. Тем не менее, в рамках физики за пределами стандартной также возможен процесс $\mu^- + N(A,Z) \to e^- + N(A,Z)$. Этот процесс нарушает закон сохранения лептонных чисел L_e и L_μ на единицу, оставляя общее число L неизменным.

Характерной особенностью процесса $\mu^- \to e^-$ конверсии в мюонном атоме является эмиссия моноэнергетического электрона с энергией $E=m_\mu$ - B_μ - E_{rec} , где m_μ -масса мюона, а B_μ , и E_{rec} энергия связи мюона в ядре и энергия отдачи ядра соответственно. Обе эти величины малы по сравнению с массой мюона, поэтому можно считать, что $E\approx m_\mu$.

С экспериментальной точки зрения $\mu^- \to e^-$ конверсия является очень привлекательным процессом с нескольких точек зрения. Во-первых, энергия электрона около 105 МэВ, что значительно больше максимальной энергии электронного спектра от распада мюона на орбите (~ 52.8 MeV), во-вторых, поскольку электрон моно-энергичен, никаких измерений в совпадениях не требуется. Потенциально эти обстоятельства позволяют улучшить чувствительность используя высокоинтенсивный пучок мюонов, не имея при этом фона случайных событий, что является серьезным препятствием для распадов $\mu^+ \to e^+ \gamma$ и $\mu^+ \to e^+ e^+ e^-$.

2. COMET на ускорительном комплексе J-PARC

Эксперимент COMET будет осуществлен на ускорительном комплексе J-PARC. Будет использоваться импульсный протонный пучок, медленно экстрагируемый из основного ускорительного кольца. Экспериментальная установка состоит из секции, обеспечивающей эксперимент протонным пучком, секции, транспортирующей мюонный пучок и детектирующей секции.

Схема эксперимента следующая: протонный пучок с энергией 8 ГэВ ударяет по мишени, Специальная система из сверхпроводящих магнитов, создающих магнитное поле 5 Тесла направляет пионы, вылетающие из мишени в обратном направлении, в транспортную систему, вдоль которой пионы на лету распадаются на мюоны. Транспортная система, изогнутая в форме буквы С (C-shape), что обеспечивается использованием изогнутых и прямых соленоидов со сверхпроводящими обмотками, отбирает низко-энергичные мюоны и доставляет их к мишени, в которой они останавливаются. Электроны, возникающие в результате $\mu^- \rightarrow e^-$ конверсии пролетают в магнитном поле, создающемся сверхпроводящим соленоидом, и попадают в детектор, состоящий из строу-трекера и электромагнитного калориметра. Детектирование вылетевшего из мишени электрона будет производиться между импульсами протонов, идущих от ускорителя, с определенной задержкой, чтобы избавиться от мгновенно возникающего фона.

3. Двухфазная реализация проекта СОМЕТ

Принимая во внимание риски амбициозной цели увеличения чувствительности измерений в 10000 раз, необходимо экспериментально изучить все ожидаемые фоновые процессы и возможные препятствия. С этой целью проект разделен на две фазы. Окончательная чувствительность, задекларированная в рамках проекта, будет достигнута в Фазе-II. В Фазе-I будут оценены экспериментальные условия и измерены все фоны, а также будет проведен поиск $\mu^- \rightarrow e^-$ конверсии с промежуточной чувствительностью.

Основные цели Фазы-І:

- 1) создание для СОМЕТ линии протонного пучка;
- 2) создание части линии транспортировки мюонного пучка (изогнутого на 90° сверхпроводящего соленоида)
- 3) прямые измерения подавления протонов (proton extinction) между импульсами и других потенциальных источников фона для полномасштабного эксперимента COMET, используя реальную пучковую линию.
- 4) поиск $\mu^- \to e^-$ конверсии на уровне чувствительности 3.0×10^{-15} , что в 200 раз превышает существующую на данный момент границу.
- В Фазе-І применяются менее жесткие требования к характеристикам детектора.

Фаза-II включает создание всех пучковых линий в полном масштабе и проведение поиска $\mu^- \rightarrow e^-$ конверсии на уровне чувствительности $3 \cdot 10^{-17}$ с учетом приобретенного опыта во время Фазы-I.

4. Система детектирования СОМЕТ

Система детектирования СОМЕТ включает следующие основные компоненты: электронный трекер, электромагнитный калориметр, системы защиты от космических лучей (система вето) и на Фазе-I также цилиндрический детектор. Все детекторы, за исключением системы вето, располагаются внутри большого соленоида, создающего магнитное поле величиной 1 Тесла.

<u>Электронный трекер</u> – детектор, состоящий из строу-трубок. Всего в него входят 5 модулей, отстоящих друг от друга на расстоянии 48 см, расположенных таким образом, что оси строу-трубок перпендикулярны оси соленоида. Каждый из пяти модулей состоит из четырех рядов строу-трубок. Система электронного трекера должна обеспечивать импульсное разрешение 0,15 МэВ/с и пространственное разрешение 150 мкм.

<u>Электромагнитный калориметр</u> состоит из сцинтилляционных кристаллов последнего поколения LYSO с большим свето-выходом и коротким временем высвечивания, всего калориметр содержит более 2000 кристаллов, каждый размером 20x20x120 мм³. Калориметр должен иметь энергетическое и пространственное разрешение 5% и 1 см соответственно.

Электронный трекер и электро-магнитный калориметр на Фазе-I, будут использованы для изучения состава мюонного пучка и измерений фона, тогда как на Фазе-II — это основные детекторы для поиска $\mu^- \to e^-$ конверсии с самой высокой чувствительностью. Ввиду отсутствия транспортной системы электрона с закругленными соленоидами на Фазе-I, ожидаются большие загрузки этих детекторов, поэтому их использование для поиска $\mu^- \to e^-$ конверсии возможно только при низких интенсивностях протонного пучка.

<u>Система вето от космики</u> защитит основные детекторы от фона космического излучения. Она включает пассивную защиту из бетона и железа и активную защиту, состоящую из двух слоев пластиковых сцинтилляторов.

<u>Цилиндрический детектор</u> будет использоваться только на Фазе-I, В отличие от трекера и калориметра он не подвержен воздействию частиц пучка непосредственно. Поэтому цилиндрический детектор является подходящим инструментом для поиска $\mu^- \rightarrow e^-$ конверсии на Фазе-I, обеспечивая промежуточную чувствительность. Детектор состоит цилиндрической многослойной дрейфовой камеры, мишени, останавливающей мюоны и триггерного годоскопа.

5. Участие ОИЯИ в проекте СОМЕТ

Основной вклад ОИЯИ в СОМЕТ заключается в участии в создании двух основных детекторов — электромагнитного калориметра и строу-трекера, при этом очень заметным было также и участие в различных работах по моделированию.

5.1. Электромагнитный калориметр

На начальной стадии проекта СОМЕТ группа ОИЯИ предложила два типа сцинтилляционных кристаллов, GSO и LYSO, которые начали рассматриваться в коллаборации как наиболее реальные кандидаты. Чтобы оценить их адекватность для целей СОМЕТ, целый ряд исследований был осуществлен в ЛЯП ОИЯИ. Эти исследования показали преимущества кристалла LYSO, при том, что ограничивающим фактором была его более высокая

стоимость по сравнению с кристаллом GSO. Поэтому окончательное решение по выбору кристалла LYSO было сделано после тестирования прототипов калориметра, состоящих как из кристаллов GSO так LYSO на пучке электронов с учетом соотношения цена/характеристика. Кристаллы LYSO, использованные для прототипа, в количестве 50 шт. сначала были исследованы в ОИЯИ, измерялись такие характеристики как свето-выход, поглощение, однородность и т.п. Позже сотрудники ОИЯИ участвовали в сборке прототипа, измерениях на пучке, а после и в независимой обработке записанной информации тестирования. Сравнив полученные результаты, коллаборацией сделан выбор в пользу кристалла LYSO как базового кристалла калориметра.

Специальный стенд для измерения характеристик кристаллов был создан в ЛЯП. Стенд включает механические устройства для удаленного контроля перемещения кристалла, фотоумножители, пластиковые вето-счетчики, соответствующую электронику и программное обеспечение. Все кристаллы калориметра будут протестированы на этом стенде. ОИЯИ берет на себя полную ответственность за сертификацию кристаллов как для Фазы-I так и для Фазы-II. На Фазе-I только порядка четверти всех кристаллов будет использовано.

Продолжается также работа по дальнейшему исследованию свойств данного кристалла, различных вариантов светосбора, различных оберточных материалов и т.д.

На более поздней стадии сотрудники ОИЯИ примут участие в сборке, калибровке и тестировании каолориметра.

5.2. Строу-трекер

Группа сотрудников ЛЯП ОИЯИ несет полную ответственность за производство строу-трубок для Фазы-I и проведение R&D для Фазы-II. Для производства тонких строу-трубок используется ультразвуковая сварка алуминизированного майлара. Разработанный ранее в ЛФВЭ метод сварки строу-трубок с толщиной пленки 36 мкм был модифицирован для сварки трубок с толщиной стенок 20 мкм. Минимальная толщина стенок является неотъемлемым требованием для СОМЕТ, что объясняется необходимостью минимизации многократного рассеяния. Были также модифицированы процедуры тестирования строу-трубок на течь, тестирования на давление и растяжение в соответствии с требованиями СОМЕТ. Новые стандарты тестирования были установлены.

В результате партия строу-трубок более 2500 штук длиной 120 и 160 см, диаметром 9,8 мм и толщиной стенок 20 мкм была произведена, протестирована и отправлена в Японию.

Следующим шагом в этом направлении является подготовка и проведение R&D работ строу-трубок для Фазы-II. Для Фазы-II мы должны освоить производство более тонких трубок с толщиной стенок 12 мкм и с меньшим диаметром 5 мм. С этой целью мы разрабатываем новый производственный участок в ЛЯП. Метод сварки остается прежним, но при этом целый ряд НИР потребуется для получения равномерного шва, учитывая тонкость стенок пленки и малость диаметра трубки.

Сотрудники ОИЯИ будут также участвовать в монтаже и тестировании полномасштабного трекера сначала для Фазы-I, а затем и R&D работ строу-трекера для Фазы-II.

Сотрудники ОИЯИ также участвуют в разработке дизайна строу-трекера – конструкции модулей, организации пространства внутри модуля с целью наиболее оптимального расположения модулей электроники считывания, соединения модулей в единый функциональный агрегат.

5.3 Моделирование и анализ данных

Для разработки строу-трекера и калориметра потребовался большой объем работ по моделированию, результаты этой работы отражены в главном документе COMET, который называется TDR (Technical Design Report) для Фазы-І. В частности для строу-трекера были получены значения эффективности и пространственного разрешения для различных условий: для трубок разного диаметра, разной толщины стенок, разного зазора между трубками. Для калориметра моделирование проводилось для двух типов кристаллов, GSO и LYSO, используя реальные оптические параметры.

Среди прочего были промоделированы такие характеристики как световыход и светосбор для различных отражающих материалов. Было найдено, что энергетическое разрешение для кристалла LYSO лучше и этот вывод был впоследствии подтвержден экспериментально. Было проведено специальное моделирование функционирования основного ускорительного кольца комплекса J-PARC с целью его оптимизации с точки зрения достижения фактора подавления протонов между банчами ниже 10^{-9} , что является критическим требованием для COMET.

Данные, записанные в ходе тестирования на электронном пучке прототипов калориметра были обработаны независимо от аналогичной процедуры, произведенной японской стороной. Обе обработки показали, что кристалл LYSO обладает лучшими характеристиками. В будущем мы планируем увеличить масштаб нашего участия в работах по моделированию и обработке и быть готовыми к приему данных и их обработке к моменту начала набора статистики.

6. Финансирование

Основную часть расходов по реализации проекта СОМЕТ несет японская сторона. Финансирование, необходимое для создания протонной пучковой линии, экспериментальной зоны и магнитной системы Фазы-I было выделено. Производство детекторов тоже в основном финансируется японской стороной, но при участии и других коллаборантов. Расходы ОИЯИ связаны с необходимостью создания нового производственного участка и проведения НИР по производству тонкостенный строу-трубок, покупке оборудования для него, а также разных материалов, включая часть кристаллов. Помимо ресурсов темы 03-2-1101-2010/2016 мы рассчитываем на поддержку из гранта Полномочного Грузии и Программы сотрудничества ОИЯИ-Беларусь.

7. Заключение

Эксперимент COMET в J-PARC направлен на поиск когерентного безнейтринного перехода $\mu^- + Al \rightarrow e^- + Al$ в мюонном атоме алюминия на уровне чувствительности $3 \cdot 10^{-17}$, соответствующем 90% уровню достоверности $< 10^{-16}$.

Двойная цель Фазы-I СОМЕТ включает і) изучение экспериментальных условий и различных источников фона и іі) непосредственно поиск $\mu^- \to e^-$ конверсии с промежуточной чувствительностью на уровне $3 \cdot 10^{-15}$, что в 200 раз лучше достигнутой на сегодня границы. Роль ОИЯИ в проекте СОМЕТ заметна, и признана коллаборацией.

Как следствие, мы подаем заявку на продолжение в ОИЯИ текущего проекта "Поиск когерентной безнейтринной μ-е конверсии в J-PARC (проект COMET)" на 2017-2019 гг. Этот период совпадает с началом физических измерений Фазы-I, которое планируется на 2018-

 $2019\ {
m гг.}$, и подготовкой и проведение R&D работ для строу-трекера для Фазе-II, начало которой запланировано на $2021\ {
m год.}$

План работ по проекту

1.	Участие в сборке и тестировании строу-детектора для Фазы-I	2017-2018
2.	НИР по производству строу трубок с толщиной стенок 12 мкм и диаметром 5мм для Фазы-II	2017-2018
3.	Тестирование в ОИЯИ кристаллов для калориметра:	2017-2019
4.	Участие в разработке конструкции калориметра, его сборке и Тестировании:	2017-2019
5.	Участие в тестовых измерения на пучке компонент детектора:	2017-2019
6.	Создание в ЛИТ компьютерной фермы для СОМЕТ	2017
	Моделирование комплесной системы детектирования (трекер, калориметр) для определения аксептанса, ожидаемых ошибок, разработки алгоритма восстановления и т.д.	2017-2019
8.	Участие в сборке, наладке и тестировании всего детектора	2017-2019
9.	Участие в инженерных и физических сеансах	2018-2019
10.	Участие в сеансах по набору статистики и обработке данных	2019

Оценка стоимости и ресурсов

Предложение по ресурсам, необходимым для осуществления проекта "Экспериментальный поиск когерентной безнейтринной μ -е конверсии на J-PARC (COMET)", 2017-2019 гг.

Форма №26

Приборы, оборудование, ресурсы, Источники финансирования			Затраты в единицах (k\$). Требуемые ресурсы	Предложение Лаборатории по плану финансирования и ресурсам		
				1-й год	2-й год	3-й год
	Компьютеры Электрон. модули Материалы		15	5	5	5
Основ-			96 320	50 110	27 110	19 100
Ресурсы	Часы	Констр. отдел ЛЯП, Мастер- ские	800 часов 1200 часов	300 500	300 500	200 200
рования	Бюджет	Расходы из бюд- жета (без з/п)	587	217	194	176
Источник финансирования	Внебюджетные	Грант Полно- мочного Грузии	30	10	10	10
Источн	Внебюд	Программа сотрудничества ОИЯИ-Беларусь	15	5	5	5

Руководитель проекта

Цамалаидзе 3.

Смета затрат по проекту "Экспериментальный поиск когерентной безнейтринной μ -е конверсии на J-PARC (COMET)", 2017-2019 гг.

Форма №29

Цамалаидзе 3.

NN	Цель расходов от ЛЯП	Полная	1 ^й год	2 ^й год	Зй год
		стои-			
		мость			
	Прямые расходы				
1.	Ускоритель	-	-	-	-
2.	Вычисления	-	-	-	-
3.	Конструкторский отдел	800 часов	300	300	200
4.	Мастерские ЛЯП	1200 ча-	500	500	200
	_	сов			
5.	Материалы	320k\$	110	110	100
6.	Оборудование	111k\$	55	32	24
7.	Контракты по НИР	-	-	-	-
8.	Командировки:				
	а) Во вне-рублёвую зону	150k\$	50	50	50
	b) По России	6k\$	2	2	2
	с) По протоколу	-	-	-	_

Директор ЛЯП	Бедняков В.А

Руководитель проекта

Помощник директора Усова Г.А. по экономическим вопросам