New results obtained in the ALICE experiment with participation of the JINR group

(The Project was approved for 2017-2019 years.)

E. Rogochaya

JINR, Dubna

January 16, 2017

Outline

- JINR group in ALICE
- Femtoscopic kaon analysis
 - 1D $K_{\perp}^{+}K_{\perp}^{-}$ correlation analysis in Pb-Pb@2.76 TeV
 - 1D K[±]K[±] correlation analysis in p-Pb@5.02 TeV
- Quarkonia physics
- Ultra-peripheral collisions of heavy ions
- GRID status
- R&D upgrade of ALICE PHOS read-out system
- Conclusions and plans for future

ALICE Collaboration

42 countries, 174 institutes, 1800 members

ALICE-JINR group:

- 10 physicists including 2 PhD students
- o 1 undergraduate student
- $\,\circ\,$ 1 expert for the root software updating and GRID computing management
- 2 physicists from P.J. Safarik University (UPJS) in Kosice, Slovakia (by the Joint Research Protocol)

Interests and activity of ALICE-JINR group

- Bose-Einstein correlations (femtoscopy physics)
 - Analysis of two charged kaon correlations in pp, p-Pb and Pb-Pb collisions and update of the analysis software.

Quarkonia physics

- Creation and update of the Cocktail generator (model) of J/ψ and Υ production in pp, p-Pb and Pb-Pb collisions.
- Monte Carlo simulation using this generator to estimate the registration efficiency of these mesons in the dimuon decay mode $(J/\psi \to \mu^+\mu^-, \Upsilon \to \mu^+\mu^-)$.
- Ultra-peripheral collisions of heavy ions:
 - Study of J/ψ and ρ_0 photoproduction in Pb-Pb collisions.
- Physics of resonances
 - Suggestion (under consideration) to study of the spin-alignment (tensor polarization) of ϕ meson production in Pb-Pb collisions (in collaboration with the group of P.J. Safaric University, Kosice, Slovakia).
- GRID computing and software activities
- R&D upgrade of the ALICE PHOS electronic system
- o Participation in the ALICE Shifts (90 shifts in 2016)

ALICE setup

Tracking and vertex:

- Time Projection Chamber TPC
- Inner Tracking System ITS

Particle identification:

- TPC
- Time-of-Flight -TOF

Centrality determination:

- V0
- Muon Forward Spectrometer -MUON ARM (absorber, dipole magnet, tracking chambers, muon filter, trigger chambers)

Work in progress!

- \circ $R_{\rm K^+K^-}$ are lower than $R_{\rm K^\pm K^\pm}$ but within errors
- Presented at GDRE2016 (Nantes, France) by K.R. Mikhaylov (JINR/Moscow ITEP)

Correlation function:

$$C(q_{\mathrm{inv}}) = \mathrm{Norm} \cdot (1 + \lambda \cdot \mathrm{FSI}(q_{\mathrm{inv}})) P(q_{\mathrm{inv}}),$$

where

- FSI=CF $_{\rm FSI}$ -1 and CF $_{\rm FSI}$ (shown on the left) is numerically calculated using the Lednicky CF formula [R. Lednicky, V.L. Lyuboshits, Sov. J. Nucl. Phys. 35 (1982) 770]
- including resonance formation due to FSI [R. Lednicky, Phys. Part. Nucl. Lett. 8 (2011) 965]
- a₀ and f₀ resonances parameters are taken from the combined Martin [A.D. Martin et al., Nucl. Phys. B 121 (1977) 514] + Achasov [N.N. Achasov, A.V. Kiselev, Phys. Rev. D 68 (2003) 014006] model

Femtoscopic analysis: 1D K[±]K[±] correlations in p-Pb@5.02 TeV

Correlation function is fitted by the Bowler-Sinyukov formula:

$$\mathcal{C}(q_{\mathrm{inv}}) = \left((1 - \lambda) + \lambda \mathcal{K}(q_{\mathrm{inv}}) \left(1 + e^{-R_{\mathrm{inv}}^2 q_{\mathrm{inv}}^2} \right) \right) P(q_{\mathrm{inv}}),$$

where K - Coulomb interaction. P - baseline.

Typical correlation function of identical $K^{\pm}K^{\pm}$ pairs (here shown for central events and low transverse momentum $k_{\rm T}$).

- Invariant radii R_{inv} of $\mathsf{K}^{\pm}\mathsf{K}^{\pm}$ pairs shown with statistical (vertical lines) and systematic (boxes) errors
- Presented at CERN femtoscopy meetings by E.P. Rogochaya

Quarkonia

E. Rogochava

Nuclear modification factor: $R_{AA} = \frac{\mathbf{y}^{\text{Pb-Pb}}}{\langle T_{AA} \rangle \times \sigma^{\text{pp}}}$, where $Y^{\mathrm{Pb-Pb}}$ - corrected J/ψ (Υ) yield in Pb-Pb, T_{AA} nuclear overlap function.

- J/ψ yields are less suppressed in ALICE than in PHENIX
- Visible increase of the R_{AA} is seen with the energy rise from 2.76 TeV [J. Adam et al. [ALICE Collaboration], JHEP 1605 (2016) 179] to 5.02 TeV according to the prediction of the models with the J/ψ regeneration mechanism [X. Zhao et al., Nucl. Phys. A 859 (2011) 114; K. Zhou et al., Phys. Rev. C 89 (2014) 05491] in the quark-gluon plasma
- Υ(1S) yields at forward rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV are suppressed in comparison to the ones at 2.76 TeV (left) and CMS results (bottom)

Ultra-peripheral collisions of Pb-Pb@5.02 TeV: J/ψ and ρ^0 photoproduction γ of one ion electromagnetic field fluctuates into bound $q\bar{q}$ pair (vector meson) \rightarrow meson scatters elastically on

 γ of one ion electromagnetic field fluctuates into bound $q\bar{q}$ pair (vector meson) \rightarrow meson scatters elastically on another ion by Pomeron exchange:

coherent - on a nucleus as a whole, incoherent - on a nucleon.

Invariant mass of coherent dimuons: CB parameterization

background total

Incoherent J/ψ

Incoherent $\psi(2S) o J/\psi \pi^+$

Continuum $\gamma\gamma \to \mu\mu$ Incoherent J/ψ with proton dissociation [H1 Collaboration, Eur. Phys. J. C 73 (2013) no.6, 2466]

statistical error

93 (2016) no.5, 055206]

| systematic error STARlight [8.R. Klein et al., Comput. Phys. Commun. 212 (2017) 258]

EPS09 LO [K.J. Eskola et al., JHEP 0904 (2009) 065]

GKZ [V. Guzey et al., Phys. Rev.

Total:

- Soding function [P. Soding, Phys. Lett. 19 (1966) 702]:
 Breit-Wigner parameterization + interference of directly
- and resonantly $(
 ho^0)$ produced $\pi^+\pi^-$ pai
- background
- The first results were obtained and presented at CHARM2016 (Bologna, Italy) by V.N. Pozdnyakov (JINR)
 New results obtained in the ALICE experiment
 9 / 20

GRID computing and software activities

- ALICE GRID: 47113 cores, 78 centers: T0 1 (CERN), T1 4, T2 73
- JINR ALICE GRID T2 (T1 for JINR CMS)
- JINR ALICE GRID is a part of eight Russian ALICE GRID centers (RDIG Russian Data Intensive Grid)
- JINR GRID Farm (3480 cores CPU, 408 Tb Disk-SE, 139 Tb EOS)

RDIG contribution to the ALICE GRID is 4.8%

JINR contribution to RDIG is 21.2%

Presented at ALICE T1/T2 Workshop (Bergen, Norway) by G. Stiforov (JINR), A. Zarochentsev (SPbGU).

E. Rogochaya

New results obtained in the ALICE experiment

PHOS upgrade R&D: Ways

(in collaboration with NRC "Kurchatov Institute")

Current PHOS setup:

Each channel: lead tungstate, PbWO₄, crystal of 2.2×2.2 cm² cross section and 18 cm length + Avalanche photo-detector (APD) + preamplifier

• **APD** 5×5 mm²:

New results obtained in the ALICE experiment

- \circ Operating temperature: -28°C
- Time-of-flight resolution $\sigma_t = 2000-3000 \, \mathrm{ps}$ at 1 GeV (useless for particle identification!)

Ways for upgrade:

① New **APD** ($10 \times 10 \,\mathrm{mm^2}$, $50 \,\mu\mathrm{m}$ pixels):

E. Rogochaya

 $\sigma_t = 270 \,\mathrm{ps}$ at 1 GeV, near the same energy resolution at $+18^\circ\mathrm{C}$ as for old APD at $-28^\circ\mathrm{C}$

PHOS upgrade R&D: Test results

PHOS prototype (256 channels) installed in the electron test beam of the CERN PS (1-8 GeV beam energy) or of the SPS (10-110 GeV).

Energy resolution versus electron energy for all considered types of the photo-detector

E. Rogochaya

Time resolution of the SiPM detector versus energy excretion in the crystal for different voltage in the detector at $+18^{\circ}\,\text{C}$

New results obtained in the ALICE experiment

Publications in 2016

- 1 "Inclusive quarkonium production at forward rapidity in pp collisions at \sqrt{s} =8 TeV", J. Adam et al. [ALICE Collaboration], Eur. Phys. J. C 76 (2016) no.4, 184
- ² "Differential studies of inclusive J/ψ and $\psi(2S)$ production at forward rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ =2.76 TeV", J. Adam et al. [ALICE Collaboration], JHEP 1605 (2016) 179
- ** "Centrality dependence of pion freeze-out radii in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ =2.76 TeV", J. Adam et al. [ALICE Collaboration], Phys. Rev. C 93 (2016) no.2, 024905
- 4 "Inclusive quarkonium production at forward rapidity in pp collisions at \sqrt{s} =8 TeV", J. Adam et al. [ALICE Collaboration], Eur. Phys. J. C 76 (2016) no.4, 184
- 5 "Measurement of an excess in the yield of J/ψ at very low $p_{\rm T}$ in Pb-Pb collisions at $\sqrt{s_{\rm NN}}{=}2.76\,\text{TeV}$ ", J. Adam et al. [ALICE Collaboration], Phys. Rev. Lett. 116 (2016) no.22, 222301
- "Multipion Bose-Einstein correlations in pp, p-Pb, and Pb-Pb collisions at energies available at the CERN Large Hadron Collider", J. Adam et al. [ALICE Collaboration], Phys. Rev. C 93 (2016) no.5, 054908
- "Production of $K^*(892)^0$ and $\varphi(1020)$ in p-Pb collisions at $\sqrt{s_{\rm NN}}$ =5.02 TeV", J. Adam et al. [ALICE Collaboration], Eur. Phys. J. C 76 (2016) no.5, 245
- ® "Centrality dependence of $\psi(2S)$ suppression in p-Pb collisions at $\sqrt{s_{\rm NN}}$ =5.02 TeV", J. Adam et al. [ALICE Collaboration], JHEP 1606 (2016) 050
- \circ "J/ ψ suppression at forward rapidity in Pb-Pb collisions at $\sqrt{s_{
 m NN}}$ =5.02 TeV", J. Adam et al. [ALICE Collaboration], arXiv:1606.08197[nucl-ex]

Conferences in 2016

- "Operations and plans RDIG T2s", G. Stiforov (JINR), A. Zarochentsev (SPbGU), ALICE T1/T2 Workshop, Bergen, Norway
- "Femtoscopy of identical kaons with ALICE at LHC", L. Malinina (JINR/MSU, SINR), XVIII GDRE Workshop, Subatech, Nantes, France
- "Identical and non-identical kaon correlations in pp and Pb-Pb collisions at the LHC with ALICE", K. Mikhailov (JINR/Moscow ITEP), XVIII GDRE Workshop, Subatech, Nantes, France
- \oplus "Ultra-peripheral J/ψ photoproduction in Pb-Pb interactions at ALICE", V.N. Pozdnyakov (JINR), CHARM2016, INFN, Bologna, Italy
- 5) "Bose-Einstein correlations of charged and neutral kaons in pp and Pb-Pb collisions at the LHC energies with the ALICE experiment", K. Mikhailov (JINR/Moscow ITEP), International Session-Conference of the Section of Nuclear Physics of PSD RAS, Dubna, Russia

LHC schedule:

ALICE plans for future

Year	System	E (TeV)	Lumi (cm $^{-2}$ s $^{-1}$)	Rate (kHz)	Time
2015	рр	13	5×10 ³⁰	300	7w
	Pb-Pb	5.02	1×10 ²⁷	8	3w
	pp-ref	5.02	5×10 ³⁰	300	4d
2016	pp	13	5×10 ³⁰	300	28w
	p-Pb	5.02	1×10 ²⁹	200	4w
	pp-ref	5.02	5×10 ³⁰	300	7d
2017	рр	13	5×10 ³⁰	300	24w
2018	рр	13	5×10 ³⁰	300	28w
	Pb-Pb	5.02	1×10 ²⁷	8	4w
	pp-ref	5.02	5×10 ³⁰	300	7d

Minimum bias event numbers stored during the Run 2:

pp at 13 TeV 822M p-Pb at 5.04 TeV 764M p-Pb at 8 TeV 126M Pb-Pb at 5.04 TeV 157M

Conclusion and plans for 2017

Conclusion:

ALICE-JINR group carries out successfully the physics analysis of the experimental data and the R&D upgrade of ALICE PHOS read-out system:

- Analysis results have been reported at international conferences and some finished ones have been published in peer-reviewed journals. Several papers are under preparation.
- RDIG contribution to the ALICE GRID is 4.8%, JINR contribution to RDIG is 21.2%.
- Aim of PHOS upgrade is to provide a good σ_t resolution and improve direct photon identification.

Plans:

- Publication of 3D charged kaon correlation analysis results in Pb-Pb@2.76 TeV (practically finalized).
- Femtoscopic analyses for $K^{\pm}K^{\pm}$ in p-Pb collisions at 5.02 TeV and for $K^{+}K^{-}$ in Pb-Pb collisions at 2.76 TeV.
- Start of the femtoscopic analysis for ${\sf K}^\pm{\sf K}^\pm$ in pp collisions at 13 TeV and in Pb-Pb at 5.02 TeV.
- More detailed resonance analysis, particularly to study the polarization characteristics of ϕ meson (in collaboration with the group from Kosice, Slovakia).
- Development and support of the quarkonia generator.
- Analysis of the J/ψ and ho^0 photoproduction in ultra-peripheral Pb-Pb collisions at 5.02 TeV.
- Work on the R&D upgrade of the ALICE PHOS read-out system.
- GRID and PROOF support in the JINR computing system.

THANK YOU FOR YOUR ATTENTION!

Backup: PHOS upgrade R&D

One of the PHOS modules:

The PHOS detector consists of near 3.5 modules installed at a distance of 4.6 m from the interaction point. PHOS covers the acceptance of near 100° in azimuthal angle and (-0.13, +0.13) in pseudorapidity. Each module has 3584 detection channels.

Backup: Ultra-peripheral collisions of heavy ions

Energy spectrum of the neutron ZDC (C-side) in UPC of Pb-Pb in Run 2:

Events registered in ZDC from left to right (number of detected neutrons): 0n, 1n, 2n.

Backup: Proton-dissociative photoproduction of J/ψ in UPC

H1 Collaboration, Eur. Phys. J. C 73 (2013) no.6, 2466

Diffractive J/ψ meson production in electron-proton collisions:

- a) elastic J/ψ production in which the proton stays intact
- b) proton-dissociative J/ψ production in which the proton dissociates to a low mass excited state with mass $M_Y>m_p$