

The COherent Muon to Electron Transition (COMET) experiment

Zviad Tsamalaidze

JINR COMET team

G. Adamov, Sh. Bilanishvili, V.N. Duginov, K.I. Gritsai, V.V. Elsha, T.L. Enik, I.L. Evtoukhovich, P.G. Evtoukhovich, T. Javakhishvili, V.A. Kalinnikov, A. Khvedelidze, X. Khubashvili, G.A. Kozlov, E.M. Kulish, A.S. Moiseenko, S.A. Movchan, B.M. Sabirov, A.G. Samartsev, Yu.Yu. Stepanenko, Z. Tsamalaidze, N. Tsverava, S.N. Shkarovskiy, E.P. Velicheva, A.D. Volkov

J-PARC at Japan

OUTEINE

Physics motivation **Mu-e conversion mechanism** COMET requirements and backgrounds **COMET** setup JINR contribution and plans Summary

Standard Model (SM)

The SM can explain most of the experimental results. However, there are still many questions to answer

All these motivates physicists to go Beyond the Standard Model (BSM). Many of these models predict Charged Lepton Flavor Violation (CLFV)

Where doesn't work SM:

baryon/antibaryon asymmetry nature of dark matter, and energy particle mass prediction no theory of gravitation <u>neutrino oscillations</u> and etc.

A transition between μ , e, τ , where lepton family number is violeted

What is CLFV?

CLFV in the SM

- CLFV is forbidden, but, quark family number is violated via CKM matrix
- In the SM + v masses
 - it's violated in neutral leptons: neutrino oscillations (PMNS matrix), but expected CLFV processes rate is too small (~10⁻⁵⁴). Not observed so far
- In the SM + new physics
 - A wide variety of proposed extensions to the SM predict rate $\sim 10^{-15}$ (model dependent)

Up to $10^{-15} \rightarrow sensitive$ to "new physics"

In COMET is planned to reach sensitivity of 2.6 · 10^{-15,-17}

Search of CLFV provides a sensitive test for BSM

What is a µ-e Conversion?

How to reach unprecedentedly high sensitivity (7.0 $\times 10^{-13} \rightarrow 10^{-15,-17}$)

NEED NEW IDEAS !!!

- **1. Reduce Beam Associated Background**
 - Pulsed proton beam and used the long μ lifetime
- 2. Highly intense muon source
 - High Intensity Pion Production (μ from π decay) Use magnetic solenoids to capture, transport, charge and momentum selection, detect μ
- 3. Electron Energy Resolution and Timing
 - Excellent calorimeter and tracking detectors, employ new electronic technology to handle higher rates.

Many of these ideas were elaborated in MELC, (V.M Lobashev, INR, Moscow, 1992)

The COMET collaboration

182 collaborators 32 institutes, 14 countries

R. Abramishvili¹¹, G. Adamov¹¹, R. Akhmetshin^{6,31}, V. Anishchik⁴, M. Aoki³² Y. Arimoto¹⁸, I. Bagaturia¹¹, Y. Ban³, A. Bondar^{6,31}, Y. Calas⁷, S. Canfer³³, Y. Cardenas⁷, S. Chen²⁸, Y. E. Cheung²⁸, B. Chiladze³⁵, D. Clarke³³, M. Danilov^{15,26}, P. D. Dauncey¹⁴, W. Da Silva²³, C. Densham³³, G. Devidze³⁵, P. Dornan¹⁴, A. Drutskoy^{15, 26}, V. Duginov¹⁶, L. Epshteyn^{6, 30, 31}, P. Evtoukhovich¹⁶, G. Fedotovich^{6,31}, M. Finger⁸, M. Finger Jr⁸, Y. Fujii¹⁸, Y. Fukao¹⁸, E. Gillies¹⁴, D. Grigoriev^{6, 30, 31}, K. Gritsay¹⁶, E. Hamada¹⁸, R. Han¹, K. Hasegawa¹⁸, I. H. Hasim³², O. Hayashi³², Z. A. Ibrahim²⁴, Y. Igarashi¹⁸, F. Ignatov^{6,31}, M. Iio¹⁸, M. Ikeno¹⁸, K. Ishibashi²², S. Ishimoto¹⁸, T. Itahashi³², S. Ito³², T. Iwami³², X. S. Jiang², P. Jonsson¹⁴, T. Kachelhoffer⁷, V. Kalinnikov¹⁶, F. Kapusta²³, H. Katayama³² K. Kawagoe²², N. Kazak⁵, V. Kazanin^{6,31}, B. Khazin^{6,31}, A. Khvedelidze^{16,11} T. K. Ki¹⁸, M. Koike³⁹, G. A. Kozlov¹⁶, B. Krikler¹⁴, A. Kulikov¹⁶, E. Kulish¹⁶, Y. Kuno³², Y. Kuriyama²¹, Y. Kurochkin⁵, A. Kurup¹⁴, B. Lagrange^{14,21}, M. Lancaster³⁸, M. J. Lee¹², H. B. Li², W. G. Li², R. P. Litchfield^{14, 38}, T. Loan²⁹ D. Lomidze¹¹, I. Lomidze¹¹, P. Loveridge³³, G. Macharashvili³⁵, Y. Makida¹⁸, Y. Mao³, O. Markin¹⁵, Y. Matsumoto³², A. Melnik⁵, T. Mibe¹⁸, S. Mihara¹⁸, F. Mohamad Idris²⁴, K. A. Mohamed Kamal Azmi²⁴, A. Moiseenko¹⁶, Y. Mori²¹, M. Moritsu³², E. Motuk³⁸, Y. Nakai²², T. Nakamoto¹⁸, Y. Nakazawa³², J. Nash¹⁴ J. -Y. Nief⁷, M. Nioradze³⁵, H. Nishiguchi¹⁸, T. Numao³⁶, J. O'Dell³³, T. Ogitsu¹⁸, K. Oishi²², K. Okamoto³², C. Omori¹⁸, T. Ota³⁴, J. Pasternak¹⁴, C. Plostinar³³, V. Ponariadov⁴⁵, A. Popov^{6,31}, V. Rusinov^{15,26}, B. Sabirov¹⁶, N. Saito¹⁸, H. Sakamoto³², P. Sarin¹³, K. Sasaki¹⁸, A. Sato³², J. Sato³⁴, Y. K. Semertzidis^{12, 17}, N. Shigyo²², D. Shoukavy⁵, M. Slunecka⁸, A. Straessner³⁷, D. Stöckinger³⁷ M. Sugano¹⁸, Y. Takubo¹⁸, M. Tanaka¹⁸, S. Tanaka²², C. V. Tao²⁹, E. Tarkovsky^{15, 26} Y. Tevzadze³⁵, T. Thanh²⁹, N. D. Thong³², J. Tojo²², M. Tomasek¹⁰, M. Tomizawa¹⁸, N. H. Tran³², H. Trang²⁹, I. Trekov³⁵, N. M. Truong³², Z. Tsamalaidze^{16,11} N. Tsverava^{16,35}, T. Uchida¹⁸, Y. Uchida¹⁴, K. Ueno¹⁸, E. Velicheva¹⁶, A. Volkov¹⁶, V. Vrba¹⁰, W. A. T. Wan Abdullah²⁴, M. Warren³⁸, M. Wing³⁸, M. L. Wong³², T. S. Wong³², C. Wu^{2, 28}, H. Yamaguchi²², A. Yamamoto¹⁸, T. Yamane³², Y. Yang²², W. Yao², B. K. Yeo¹², H. Yoshida³², M. Yoshida¹⁸, Y. Yoshii¹⁸, T. Yoshioka²², Y. Yuan², Yu. Yudin^{6,31}, J. Zhang², Y. Zhang², K. Zuber³⁷

Including four JINR member states Belarus, Czech Republic, Georgia, Russia

COMET requirements and backgrounds

Pulse structure allows us to measure in a timing window and reduce beam-related backgrounds, and mainly determined by muonic lifetime For AI lifetime is 864ns

Extinction = $\frac{N(Protons between pulse)}{N(Protons in pulse)}$

In COMET the extinction factor must be less 10⁻⁹, *actually achieved ~ 10⁻¹¹ !*

Proton Beam, high statistics

- Energy: 8 GeV
- Power: 3.2 kW/56kW (Phase-I/Phase-II)
- Pulsed beam
- > 10¹⁷ of stopping muons are required
 - High intensity proton beam at J-PARC
 - π/μ collection using capture solenoid

BackGrounds and suppression

- Intrinsic Physics BG: Muon DIO (Decay In Orbit), Radiative muon capture, Neutrons or charged particles emission after muon capture
 - Excellent energy and momentum resolution
- Beam-related prompt/delayed BG: Radiative pion capture, Muon decay in flight, Antiproton, Proton leakage, etc.
 - Pulse beam + delayed time window
 - Good extinction factor (less than 10⁻⁹)
 - Curved solenoid
- Cosmic ray induced BG: Cosmic ray
 - Add detector for cosmic ray veto counters. Assumed 10⁻⁴ veto inefficiency

DIO Spectrum

DIO

 $\frac{1}{2}$ m_µ

signal

m"

E_e

Electrons spectrums from DIO, theoretical calculation

Precise measurement of the electron momentum and energy is required

COMET setup

Straw Tracker, 5 station ~ 5000 (10000) tubes

Requirements:

Work in vacuum, magn. field 1 Tesla
Momentum resolution ≤ 150 keV/c
Space resolution ≤ 150 µm

Electromagnetic calorimeter

Crystal detector (The crystal type LYSO)

- Initial crystal candidates were LYSO and GSO. LYSO has been selected after the beam test of the GSO and LYSO prototypes with the 105 MeV electron beam at Tohoku in March 2014
- Total size: diameter ~ 1m
- Crystal size 20x20x120 mm³, in total ~2272 crystals.
- Photon detector: APD

Requirements:

- < 5% ER at 105 MeV</p>
- 1 cm space resolution
- Work in vacuum and magnetic field of 1 Tesla

Cosmic Ray Veto (CRV)

The whole detector will be shielded from cosmic rays by 4 layers of plastic scintillators (active shield)

Requirement: Efficiency ≥ 99.99%.

Also used passive shields, 2 meter of concrete and 0.5 m thick steel.

Two-phase realization

COMET Phase-I

COMET Phase-II

Goal of COMET phase-I

A search for µ-e Conversion at the intermediate sensitivity witch would be 100-times better than the present limit (SINDRUM-II)

Background Study for the full COMET Phase-II

Direct measurement of potential background sources for the full COMET experiment by using the actual COMET beam line

COMET Phase-I

COMET Phase-I Sensitivity

Event selection	Value				
Online event selection efficiency	0.9				
DAQ efficiency	0.9				
Track finding efficiency	0.99				
Geometrical acceptance + Track quality cuts	0.18				
Momentum window (ε_{mom}) (a signal acceptance)	0.93 10	3.6 < p _e < 106.0 MeV/c			
Timing window (ε _{time})		0 < t _e < 1170 ns			
Total (Signal Acceptance for the μ -e conversion)	0.041				
$B (\mu^{-} + AI \rightarrow e^{-} + AI) = \frac{1}{N_{\mu} \cdot f_{cap} \cdot f_{gnd} \cdot A_{\mu-e}}$ Number of muons stopped inside targets Fraction of μ -e conversion to the ground state = 0.9					
Fraction of muons to be captured by AI target = 0.61					

3 x 10⁻¹⁵ S.E.S achievable in ~ 150 days of DAQ time corresponds to N_{μ} = 1.5 x 10¹⁶

Comparison of Phase-I and Phase-II parameters

Parameters	Phase-I	Phase-II
Beam power	3.2 kW (8 GeV)	56 kW (8 GeV)
Running time	150 days	1 year
Target materials	graphite	tungsten
#protons	2.37 x 10 ¹⁹	8.5 x 10 ²⁰
#muon stops (N _μ)	1.3 x 10 ¹⁶	2.0 x 10 ¹⁸
Muon rate/s	5.8 x 10 ⁹	1.0 x 10 ¹¹
#muon stops/proton	0.00052	0.00052
#BG events	0.027	0.34
The detector acceptance $(A_{\mu-e})$	0.06	0.04
S.E.S (single event sensitivity)	3.1 x 10 ⁻¹⁵	2.6 x 10 ⁻¹⁷
U.L. (upper limit, 90%CL)	< 7.2 x 10 ⁻¹⁵	< 6.0 x 10 ⁻¹⁷
Measurement start	2018-2019	2021

ICEDUST Study on COMET Phase-II

COMET Phase-II SES sensitivity / 2x10⁷ sec = 1.0 x10⁻¹⁷

Schedule of COMET Phase-I and Phase-II

	JFY	2014	2015	2016	2017	2018	2019	2020	2021	2022
COMET	construction									
Phase-I	data taking									
COMET	construction									
Phase-II	data taking									
COMET Phase-I : 2018-2019 S.E.S. ~ 3x10 ⁻¹⁵ (for 150 days with 3.2 kW proton beam)			n)			wit	S.E. (for	2021 S. ~ 3 2x10	x10 ⁻¹⁷	

JINR group's contributions in 2014-2016 and responsibilities

We are in the project since 2008

JINR has been participated in development and production of two detector systems:

- 1. Straw tracker
- 2. ECAL
- 3. Software studies (simulations)

We are coauthors of CDR (2009) and TDR (Phase-I, 2016)

Straw tracker

- Simulations: efficiency, resolution etc.
- R&D on straw tube modifications (full responsibility)
- All the methods of quality control for NA62 36 µm tubes was adapted for COMET- 20 µm (aluminized Mylar)
- All devices were re-calibrated: welding machine, breaking force machine, gas leaking test machine
- Production of straw tubes, quality checks in accordance to the COMET requirements (full responsibility)
- Participated in assembling, calibration and beam testing of the prototype

For Phase-II we need even thinner and less diameter tubes: 5 mm diameter and 12 µm wall thickness.

For this purpose the R&D works are planning in our laboratory.

Straw tube thickness and diameter:

COMET Phase-I - 20µm, 9.8mm

The complete set tubes for Phase-I has been produced and tested in 2015:

- > 2700 tubes of 20 µm wall thickness, Ø 9.8 mm 120 and 160 cm length have been produced
- These tubes passed all the tests and have been sent to Japan

In 2014-2016 the R&D for Phase-I have been done by the members of our group, using the straw production facility of the Veksler and Baldin Laboratory of High Energy Physics of JINR. Our big gratitude to VBLHEP!

Straw design and development

Development of versions of mechanical structure of the straw-detector, location of electronics and assembly of the detector in the solenoid

Calorimeter

- Simulation of processes in crystals
- Comparison of the crystal types
- Simulation of optimal structure of the calorimeter
- Simulation of the calorimeter geometry in framework ICEDUST
- Experimental study of the main parameters (uniformity, light output) LYSO crystals on a precision JINR stand
- Calibration of 64 crystals of LYSO at the JINR stand for Beam Test (Tohoku, March, 2014)
- Participation in a calorimeter design
- Quality control of all crystals will be tested in JINR (full responsibility)
- Calorimeter assembling, testing, calibration and installation at setup. (In the future)

The test bench has been prepared in DLNP

Studies of the crystal properties, light collection, wrapping materials etc. have been done both by simulations and experimentally

Energy resolution of the calorimeter on GSO and LYSO crystals at the 105–MeV electron beam (simulation)

Energy resolution of the calorimeter prototypes at the 105- MeV electron beam (measurement)

A detailed experimental study of LYSO crystals, at JINR using radiation sources

Light yield non-uniformity along the crystal length with various types of wrapping materials

Light yield (LY) non-uniformity, relative yield and energy resolution for various methods of crystal wrapping

	LY non-	Relative LY	Energy
Wrapping	uniformity,	(L=60nm),	resolution,
	$\% \ {\rm cm}^{-1}$	%	(L=60 nm),%
Without			
wrapping	0.78 ± 0.01	60	11.4
2Teflon	0.4 ± 0.06	74	11.4
4Teflon	0.36 ± 0.05	79	10.6
6Teflon	0.27 ± 0.004	83	9.5
2Teflon+ESR	0.23 ± 0.004	90	8.6
2Teflon+ESR			
+ ESR(end)	0.064 ± 0.003	100	8.6

Materials: •Teflon (AF1601, 60 μm) •ESR film (VM2000, 69 μm)

Straw-Ecal prototypes combine beam test (2014, 2015 and March 2016) at Tohoku University, Japan (1.3 GeV electron cyclotron)

The results of the measurement, March 2016

StrEcal test-beam at Tohoku, 3rd-13th March 2017, Should be FINAL!!

Simulation and data analysis

- A large amount of work on simulation of processes in crystals and straw detector has been done. This work continues.
- By simulation of the main ring of J-PARC the optimal configuration have been found giving the best *extinction factor for* operating modes. The work is finished.
- The analysis of data from prototypes of a calorimeter and a straw from the an electron beam in Tohoku, is carried out. The work is under way.
- It is planned to creation of COMET computer farm in LIT-JINR, for full-scale participation in the simulation of physical processes, optimization of all detector system, and in the physical analysis of data. The work will start in 2017.

Schedule of works on the project in 2017-2019

1.	Participation in assembling and tests of the straw detector for Phase-I	2017-2018
2.	R&D for production of the straw tubes of 12 μ wall thickness and 5 mm diameter for Phase-II:	2017-2018
3.	Test of the crystals in JINR to be used in the calorimeter:	2017-2019
4.	Participation in the calorimeter designing, assembling and tests:	2017-2019
5.	Participation in the beam tests of the detector components:	2017-2019
6.	Creation of the COMET computer farm in LIT-JINR	2017
7.	Complex detector system (tracker, calorimeter, etc.) simulation to define the acceptance, expected uncertainties, sources of systematics, reconstruction algorithm development, etc.	2017-2019
8.	Participation in assembling, installation and testing of the whole detector	2017-2019
9.	Participation in the engineering and physical run:	2018-2019
10.	Participation in the data acquisition and analysis:	2019

Summary

- ➤ The COMET is a search experiment for µ⁻ N → e⁻N at J-PARC with an excellent sensitivity of O (-17) which is four orders of magnitudes better than the present limit.
- The COMET experiment employs the staged approach
 - 1. In Phase-I, beam measurement and μ ⁻N \rightarrow e⁻N search with an intermediate sensitivity at level O (-15).
 - Construction for COMET Phase-I is fully supported by KEK/J-PARC as a first priority project.
 - The realization of Phase-I experiment is finally approved; the "J-PARC Stage-II" approval.
 - > In 2018 we will be ready for the COMET experiment Phase-I.
 - 2. Phase-II = Full COMET sensitivity.
- In parallel to preparation and carrying out Phase-I experiment, the work on creation of a full muon bunch, and R&D on detectors for a Phase-II will be performed. After completion of Phase-I the installation and assembly for Phase-II will be start.
- JINR already made very big contribution to COMET experiment and we hope it will continue to play a visible role in the feature of this experiment of fundamental importance.

A big challenge and great discovery potential experiment !

A flagship experiment for J-PARC and worldwide physics in the decade. Thank you for attention!

BACKUP

Estimation of costs and resources

Proposal for resources necessary for realization of the project "Search for coherent neutrinoless μ -e conversion at J-PARC (COMET) ", 2017-2019

Form №26

					-	-
	Units and systems of		Cost of units (k\$).	Laboratory proposal for		
The setup, resources,			Required resources	schedule of financing and re-		g and re-
Sour	ces of t	financing		sources		
				1 year	2 year	3 year
	Comp	uters	15	5	5	5
	Electr	onic devices	96	50	27	19
Main	Mater	ials	210	110	60	40
Σ.						
S		Design bureau	800 hours	300	300	200
LCe		DLNP Workshop	1200 hours	500	500	200
no	ILS					
Resources	Hours					
-	Ι					
	÷	Dudget expenses	477	217	144	116
	lge	Budget expenses	477	217	144	116
	Budget	(without salary)				
	H	Creat of the				
		Grant of the				
പ		Plenipotentiary of	20	1.0	10	10
cin		Georgia	30	10	10	10
rce of financing		December 641				
Ĩ	get	Program of the	1.5		E	E
o	ipn	JINR-Belarus	15	5	5	5
rce	n-budget	Cooperation.				

Estimate of expenses for the project "Search for coherent neutrino-less µ -e conversion at J-PARC (COMET) ", 2017-2019

Form №29

NN	Purpose of expenses from DLNP	Full cost	1 st year	2 nd year	3 rd year
	Direct expenses				
1.	Accelerator	-	-	-	-
2.	Computing	-	-	-	-
3.	Design bureau	800 hours	300	300	200
4.	Workshop LNP	1200 hours	500	500	200
5.	Materials	210k\$	110	60	40
6.	Equipment	111k\$	55	32	24
7.	Contracts for R&D	-	-	-	-
8.	Business trips:				
	a) To the non-rouble				
	zone countries	150k\$	50	50	50
	b) To the cities of rouble zone	6	2	2	2
	countries				
	c) By protocols	-	-	-	-

CLFV processes with muons

Process	Present limit	BSM model level	Future Exp.
µ N → e N	< 7.0x 10 ⁻¹³ (in Au) SINDRUM-II, 2006)	10⁻¹⁵⁻¹⁶ <i>Phys. Rev.</i> , D87(9):096020, 2013	10 ⁻¹⁷ COMET/J-PARC 10 ⁻¹⁷ Mu2e/FNAL
µ →e γ	< 4.2x10 ⁻¹³ ,latest result (MEG, April, 2016)	10 ⁻¹⁴	10 ⁻¹³ , 10 ⁻¹⁴ , PSI
$\mu \rightarrow 3e$	<1.0x10 ⁻¹² (SINDRUM, 1988)	10 ⁻¹⁶ , 10 ⁻¹⁷	10 ⁻¹⁴ , 10 ⁻¹⁵ , PSI

Process	Major backgrounds	Beam	Sensitivity Issues
$\mu N \rightarrow e N$	Beam-associated	Pulsed beam	Beam qualities
µ →e γ	Accidental	DC beam	Detector resolution (limited)
µ → 3e	Accidental	DC beam	Detector resolution (limited)

From an experimental point of view μ -e conversion is a very attractive process.

- The e- energy of about 105 MeV is far from the end-point energy of the Michel spectrum (52.8MeV).
- The event signature is a mono-energetic electron, no coincidence measurement is required.
- This process has the potential to improve sensitivity by using a high muon rate without suffering from accidental background events, which is a serious problem for searches using $\mu \rightarrow e\gamma$ and $\mu \rightarrow 3e$ decays.

COMET at J-PARC

The experimental facilities

History of search for CLFV

The high-p/COMET beam-line construction in FY2016 Main part of pion/muon transport solenoid is already installed

The works are on schedule

Construction of shielding wall of COMET beam line is finished Transport Solenoid has been produced by TOSHIBA.

Demonstration of the Pion Capture System for COMET

It is very important that this is experimental confirmation

A muon beam intensity of 10⁸ muons/sec with a proton beam of 400MeV energy with 1µA beam current from the RCNP proton ring cyclotron. This beam intensity is almost the same as in PSI. 10⁻⁴ muons/proton/GEV for MUSIC, RCNP 10⁻⁷ muons/proton/GEV for PSI The muon production efficiency per proton is about 1000

Pion production

Momentum distribution of beam particles at the end of the pion capture solenoid section.

Straw tracker

Tracker to measure electron momentum and trajectory

Straw Tube Tracker consists of ~2500 straw tube

- Main tracker for Phase-I beam measurement /Phase-II physics measurement
- 20/12µm thick, 9.8/5 mm diameter straw for Phase-I/Phase-II
- Gas mixture candidates: $Ar:C_2H_6$ (Ethan)=50:50, $Ar:CO_2$ =70:30
- Complete the mass production of Phase-I straw tube

Requirements:

•work in vacuum and under a magnetic field of 1 Tesla

•Momentum resolution \leq 150 keV/c

•Space resolution \leq 150 µm

The five stations can be changed to more (around 10) stations. It's under studies

Electromagnetic calorimeter

Requirements:

- < 5% energy resolution at 105 MeV</p>
- 1 cm space resolution
- Work in vacuum and magnetic field of 1 Tesla

	Nal(TI)	GSO	LYSO
Density, g/cm ³	3.67	6.71	7.1
Att. length, cm	2.6	1.38	1.12
Decay const., ns	230	30-60	41
Max emission, nm	415	430	420
Relative LY	100	20	70-80

Crystal detector

- Initial crystal candidates were LYSO and GSO, after the beam test LYSO has been selected
- Total size: diameter ~ 1m
- Crystal size 20x20x120 mm³, in total ~2272 crystals.
- Photon detector: APD

- To measure electron energy
- To provide a timing signal for trigger
- To give additional hit position

LYSO crystal bar size 20x20x120 mm³

Photon detector, APD 10x10 mm²

Cosmic Ray Veto (CRV)

The whole detector will be shielded from cosmic rays by 4 layers of plastic scintillators (active shield)

- CRV consists of 8 supermodules
- The modules are formed from 15 strips

Strip sizes: 0.7 x 4 x 220 cm^3 , 1.2 mm diameter WLS is equipped in a center of groove, 2700 strips in total

Also used passive shields, 2 meter of concrete and 0.5 m thick steel.

Mu2e vs. COMET

2021 or	Detector Solenoid Electromagnatic Celorineter	the ring paths lager		18-2019 ase-l
2022	Tracker Stopping Target Collimators Proton Beam Production Soler Production Target			better selection of low
	Mu2e	COMET		momentum muons
muon beamline	S-shape	C-shape		eliminate muon decay
electron pectrometer	Straight solenoid	Curved solenoid		in flight
better selection of 100 MeV electrons		eliminate protons from nuclear muon capture.		
		eliminate low energy junk events to make the detector quiet.		

ICEDUST Study on COMET Phase-II

COMET Phase-II SES sensitivity / $2x10^7$ sec = 2.6 $x10^{-17}$

> J-PARC advantage is 56kW In contrast to 8kW in FERMILAB

COMET Phase-II SES sensitivity / $2x10^7$ sec = 1.0 $x10^{-17}$

Mu2e SES sensitivity / $2x10^7 \sec = 7.5 x10^{-17}$

Test Results of FermiLab and COMET Straws

Малое значение модуля упругости. Квадратичная зависимость деформации от натяжения указывает на влияние клея на механические свойства строу. Большое значение модуля упругости. Стандартное поведение деформации от натяжения.

Лучшие механические свойства COMET строу обеспечат более длительный ресурс работы детектора в эксперименте.

µ-e conversion search at Phase-I

Cylindrical Detector System (CyDet)

- Cylindrical Drift Chamber (CDC)
- Cylindrical Trigger Hodoscope (CTH)

Inner wall	Length	1500 mm
	Radius	500 mm
Outer wall	Length	1740.9 mm
	Radius	831 mm
Number of sense layers	3	20
Sense wire	Material	Au plated W
	Diameter	$30 \mu m$
	Number of wires	4986
	Tension	50 g
	Radius of the innermost wire at the EP	530 mm
	Radius of the outermost wire at the EP	802 mm
Field wire	Material	Al
	Diameter	$80\mu m$
	Number of wires	14562
	Tension	$50 \mathrm{g}$
Gas He	e:Ethane (C2H6) = 50:50 or	90%He- $10%$ isoC ₄ H ₁₀

Backgrounds

Туре	Background	Estimated events	
Physics	Muon decay in orbit	0.01	
	Radiative muon capture	0.0019	
	Neutron emission after muon capture	< 0.001	
	Charged particle emission after muon capture	< 0.001	
Prompt Beam	* Beam electrons		
	* Muon decay in flight		
	* Pion decay in flight		Due to Incident protons
	* Other beam particles		arriving between the main
	All (*) Combined	≤ 0.0038	proton bunches
	Radiative pion capture	0.0028	
	Neutrons	$\sim 10^{-9}$	
Delayed Beam	Beam electrons	~ 0	
	Muon decay in flight	~ 0	Due to particles delayed
	Pion decay in flight	~ 0	Inside capture/transport
	Radiative pion capture	~ 0	solenolds
	Anti-proton induced backgrounds	0.0012	
Others	Cosmic rays [†]	< 0.01	
Total		0.032	
	[†] This estimate is currently limited by computing resource	09	

† This estimate is currently limited by computing resources.

• Normalized to a 3×10^{-15} of S.E.S., assuming extinction factor= 3×10^{-11}

To be measured directly in Phase-I beam measurement

Y. Fujii @ CLFV2016

OME

Detector single rate: tracker and calorimeter

	Timing	Tracker	Calorimeter	Energy
		(kHz)	(kHz)	(MeV)
DIO electrons	Delayed	10	10	50 - 60
Back-scattering electrons	Delayed	15	200	< 40
Beam flash muons	Prompt	$< 150^{\ddagger}$	$< 150^{\ddagger}$	15 - 35
Muon decay in calorimeter	Delayed		$< 150^{\ddagger}$	< 55
DIO from outside of target	Delayed	< 300	< 300	< 50
Proton from muon capture	Delayed			
Neutron from muon capture	Delayed		10	~ 1
Photons from DIO e^- scattering	Delayed	150	9000	$\langle E \rangle = 1$

Source of backgrounds

8 x 10²⁰ protons, beam extinction 10⁻⁹, at 10⁻¹⁷

Intrinsic physics backgrounds:

(come from muon stopped in target)

Muon decay in orbit - 0.05 events

Radiative muon capture, $\mu^- AI \rightarrow \nu_{\mu} + Mg + \gamma$, $\gamma \rightarrow e^+ e^-$. Max. $E_{ph} = 102.5 \text{ MeV}$, <0.001 even. Neutrons or charged particles emission after muon capture, 0.02 events

Beam-related prompt/delayed backgrounds:

(caused by beam particles of muons and other contaminated particles) Radiative pion capture, $\pi^-(A,Z) \rightarrow (A,Z-1)^* \rightarrow \gamma + (A,Z-1), \gamma \rightarrow e^+ e^-, 0.12$ events Muon decay in flight, 0.02 events Pion decay in flight, 0.001 events Beam electrons, 0.08 events Neutron and antiproton induced background, 0.024 and 0.007 events respectively

Cosmic ray induced background

Assumed 10⁻⁴ veto inefficiency 0.10 events

Total 0.4 events

Signal Sensitivity (preliminary) - 2x10⁷ sec

Single event sensitivity

$$B(\mu^- + Al \to e^- + Al) \sim \frac{1}{N_\mu \cdot f_{cap} \cdot A_e},$$

- N_μ is a number of stopping muons in the muon stopping target. It is 2x10¹⁸ muons.
- f_{cap} is a fraction of muon capture, which is 0.6 for aluminum.

total protons	8.5x10 ²⁰
muon transport efficiency	0.008
muon stopping efficiency	0.3
# of stopped muons	2.0x10 ¹⁸

 A_e is the detector acceptance, which is 0.04.

3.8 signal events with 0.4 background events in $2x10^7$ s running if B (µe) = 10^{-16}

 $B(\mu^{-} + Al \to e^{-} + Al) = 2.6 \times 10^{-17}$ $B(\mu^{-} + Al \to e^{-} + Al) < 6 \times 10^{-17} \quad (90\% C.L.)$