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What to expect from the talk

® based on arXiv:2003.06395v3

® pure theoretical (no nice pictures, no experimental data, but a
lot of diagrams %)

e example of nonequilibrium shear viscosity

® aim -> to marry standard Keldysh diagram technique and
classical simulations



Keldysh technique 1

® heavy ions collision — nonequilibrium matter, relaxation of the
matter from a defined initial state — Keldysh technique

* (0) = Tr(p0)

General formula

(0) =
S DN(x)Da(x) Wla(x), N(x)] f Do (t,x) [ Deqg(t, X)O[apc/]eth[‘Pd pal

i.c. — initial values for p field sre: p(to,x) = a(x),
Or¢ci(to, x) = M(x); the initial values for the ¢, are not fixed.

® The Wigner functions defines the initial state of the system

Wla(x), N3] = [ DE(x)el [ 47 <8O a(x) + B B(x)|p(to) a(x) — BB(x)).- J




Keldysh technique 2

Scalar field theory ¢*
S[o(x)] = 5 [ d¥x (Bup(x)8*p(x) — m?©?(x) — §o*(x) + 2J(x)p(x))

Keldysh action

el Nt

Sklr, v8] = Sler]—Slps] ‘ = >

L4 >

ng(f)
Rotation
Pal(x) = ¢ = 5 (Pr(x) + 98(X)),  hpg(x) = ¢a = wF(x) — va(x)

Sklecs <Pq] = _hf dtf d9=1x ‘Pq(t,x) (8? -V24 m2) we(t,x)
to

0o
_ghf dtfdd_lx ((pi,(t,x)goq(t,x) + %230C/(tax)<p2(tvx)> 0
to




Assumptions

(0) = [ DN()Dalx) Wla(x). 6] | Dea(t,x) | Dipq(t,x)Oliperleh Sleereal

Diagram techique g < 1

® the Wigner function is Gaussian — the Wick theorem is valid
® Perturbative expansion g < 1

(6) = <O[¢C,]e"’g J d¥x( o3 (a0 5 pa(x)3(x)) >
0

Classical simulations i — 0

® arbitrary initial Wigner function
¢ semiclassical expansion (works for arbitrary g)
(0) = [ Da(x)2N) W(a(x), N(x))]O(¢c)

¢ - solution of the classical EoM




Perturbative technique

Consider full retarded Green function

—_— Gr(X,X') = —i{pa(x)pg(x))
Perturbative approach

(6) = < O[%I]e—igfddx(soi,(x)soq(x)ﬁf@c,<x)¢3(x))>

Noninteracting Green functions

0

Retarded iG,g(xl; x2) Xp — p X1
Keldysh I'G&(Xl;XQ) X — X
Vertices

%—»— — g, H{— _1%2

"black" and "white" vertices differ by the power of A2



Perturbative technique

The first two orders of the coupling constant expansion for the full
retarded Green function

M



Perturbative technique

Zero order Green functions

=15 sin(wy(t — t/ .
G,%(x;x’) =0t - t/)/ (Z’/T)dfl Leplt t))e_lp'xv

Wp

2 _ 2 2
W, =p°+m

. d?1p cos(w,(t — t/ o
Gy(x;x') = —/h/ )T ( qup ))(2fp +1)e'P

If one-particle distribution function f, > 1 (highly excited initial
state, heavy ion collisions)

G (i) > GY(x; )

Red diagram is less important



Semiclassical expansion

_ gh?
Sl oa ) =~ [ dt [ a7 x (pahloal + & pas).
to

A[(pcl] = (auau =+ m2)90cl + g@il —J.

- Al¢cr] = 0 corresponds to projecting onto the classical equation
of motion of the Lagrangian.

82 Tt [ ditxpapl 2T
R 4t0 q:l—/gT/dt/dd1X90c1903+
to



Classical Statistical Approximation

(0) = /”Da(X)@”(X)W[Oé(X% N(x)]0(¢c) = (Olsel); ..

where ¢, is the solution of the classical equation of motion = key
element of the approach

0u0"dc + g0 = J
with initial conditions given by

¢C(t07x) = OZ(X), 8t¢6(t0ax) = I_I(X)
Numerical simulation
® find the classical trajectory as a function of the initial conditions;
® calculate observables on this trajectory;

® average over the initial conditions with the Wigner function corresponding the

considered problem.



Beyond the CSA

iS REP | 0 iS R
Spq(x)e’ K[‘PC Pq ] — _Ié_e’ K[‘PC Pq ]

J(x)

(0) = <O[¢c(X)] + & [ dy %(ﬂ%?—)]

J_0>i.c

can be calculated by variation of the classical equation of
motion

) o 6" pc(x
(Dn(xy X1y X2y - - Xn) - 6J(X1)5J(X2()-~)~5J(Xn)

I:¢¢1(X; x1) = 5(4)(x —X1),
Ls®a(x; x1,x2) = —6g¢c(x)D1(x; x1)P1(x; X2),
Ly =0,0" +m® +3g¢2(x) = Lo + 3g02(x)



Comparison of g2 and h? expansions

Let's perform semiclassical expansion of the Gg(x1,x2) up to A2 terms,
then decompose further up to g2 and see if it reproduce the perturbative
answer.

Semiclassical expansion of the full retarded Green function

Gr(x1, %) = —i{pa(x1)pq(x2)) = — (P1(x1; %)), ..

h2
+ gT</dy(¢1(Y:X2)¢3(X1;y,y7y)

I.C.

+ oc(y)Palx1iy, vy, v, X2))>

To perform expansion in g we need to express ¢.(x) and ®1(xq; x2)
through the non-interacting counterparts

be(x) = dolx) + & / dy G3(x,y)62().

1(x15 %) = —Gg(xl’X2)+3g/dy GR(x1,y)2(y)®1(y, x2),



Comparison of g2 and h? expansions

The iterative expansion of the ¢.(x) and ®1(x1; x2) up to g2 is
0c(x) = do(x) + g [ dy GBx.1)e3()
+38” [ dy 6B n)dly) [ dz GRLy. 2)03(z) + Ol
®1010) = ~GB0a. ) — 3¢ [ dy 630, V)R()GR. )
987 [ dy Rt 1)o3() [ dz 6By, 2)o(2)GR(z. )

—6g> / dy GR(x1,y)bo(y)GR(y, x2) / dz GR(y, z)¢3(2).



Comparison of g2 and h? expansions

Let us draw the contributions to the full retarded Green function
Ggr(x1, x2) pictorially.

All lines and vertices have the same meaning as in perturbative
technique. The only new element - the grey blob - denotes the free

field ¢o(x).



Comparison of g2 and h? expansions

Since only ¢o(x) depends on the initial conditions in the above
expansion, it is straightforward to perform averaging according to
the rule

(Bo(x)do(¥))ic. = (x —o o—V), =

y = iG,%(x;y).

For example, the "cactus" diagram appears as

( >i.c. =3



Comparison of g2 and h? expansions

We reproduced all the terms of g2 expansion and the only terms
which is not included in the CSA (R semiclassical) One can see,
that the Leading Order semiclassical term (the CSA) reproduce all
the contributions of the g2 terms of the is the red one, which is
small if f, > 1. That's why even the CSA include all loop g
diagrams, valid for f, > 1.
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Viscosity

In order to evaluate viscosity one can use the Kubo linear response
theory, where transport coefficients can be expressed through the
retarded correlator R(’jg of two components of the stress-energy
tensor TH" as

R (') = —0(t — E)([T(x), Tas(:))

In particular for shear viscosity one has
1
1) =~ 1A% [ ' wyREx+ i)
where (u* is energy flow velocity, u,ut = 1)
AM = 1 AMAY + AV A" ZA’“’A
aﬁ_§ aﬂ+ aﬁ_g aB | »

AP = gt — ytuyr.



Viscosity

1
n(x) = —1—0/d4y Uy, R(x + yix),
Keldysh technique
R(x; x') = =2i 877 (0" 0l (x)0" e (x) Dt (X ) Dpq (X))

v
Semiclassical expansion

R(x;x") = —4Az5 (0" (x)Dbc(x)0" O d1(x; X)) ic..

A\




Viscosity

Semiclassical result is an infinite sum of multiloop diagrams in
perturbative Keldysh technique

0 2 2 0
~ 10, £2, ~ 2, 2.



Thank you for attention!



