# Holographic Model for Light Quarks in Anisotropic Background

#### K.A. Rannu

Peoples Friendship University of Russia (RUDN) Steklov Mathematical Institute (MI RAS)

**RFBR** Grants for NICA



Dubna

23.10.2020



うして ふゆう ふほう ふほう ふしつ

RFBR grant N18-02-40069 mega

with I.Ya. Aref'eva and P. Slepov arXiv:2009.05562 [hep-th]

# Motivation

#### Goal of Holographic QCD - describe QCD phase diagram

#### **Requirements:**

- reproduce the QCD results from perturbative theory at short distances,
- $\bullet\,$  reproduce Lattice QCD results at large distances ( $\sim 1~{\rm fm})$  and small density.

I.A. talk, Wednesday



$$S = \frac{1}{16\pi G_5} \int d^5 x \, \sqrt{-g} \left[ R - \frac{f_1(\phi)}{4} \, F_{(1)}^2 - \frac{f_2(\phi)}{4} \, F_{(2)}^2 - \frac{1}{2} \, \partial_\mu \phi \partial^\mu \phi - V(\phi) \right]$$
$$F_{\mu\nu}^{(1)} = \partial_\mu A_\nu - \partial_\nu A_\mu, \ A_\mu^{(1)} = A_t(z) \delta_\mu^0 \qquad F_{\mu\nu}^{(2)} = q \, dy^1 \wedge dy^2, \ F_{23}^{(2)} = q$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \mathfrak{b}(z) \left[ -g(z)dt^{2} + dx^{2} + \left(\frac{z}{L}\right)^{2-\frac{2}{\nu}} dy_{1}^{2} + \left(\frac{z}{L}\right)^{2-\frac{2}{\nu}} dy_{2}^{2} + \frac{dz^{2}}{g(z)} \right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$S = \frac{1}{16\pi G_5} \int d^5 x \,\sqrt{-g} \left[ R - \frac{f_1(\phi)}{4} F_{(1)}^2 - \frac{f_2(\phi)}{4} F_{(2)}^2 - \frac{1}{2} \,\partial_\mu \phi \partial^\mu \phi - V(\phi) \right]$$
$$F_{\mu\nu}^{(1)} = \partial_\mu A_\nu - \partial_\nu A_\mu, \ A_\mu^{(1)} = A_t(z) \delta_\mu^0 \qquad F_{\mu\nu}^{(2)} = q \,\,dy^1 \wedge dy^2, \ F_{23}^{(2)} = q$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \mathfrak{b}(z) \left[ -g(z)dt^{2} + dx^{2} + \left(\frac{z}{L}\right)^{2-\frac{2}{\nu}} dy_{1}^{2} + \left(\frac{z}{L}\right)^{2-\frac{2}{\nu}} dy_{2}^{2} + \frac{dz^{2}}{g(z)} \right]$$

I.A., K.R. JHEP 1805 206 (2018)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

$$S = \frac{1}{16\pi G_5} \int d^5 x \ \sqrt{-g} \left[ R - \frac{f_1(\phi)}{4} \ F_{(1)}^2 - \frac{f_2(\phi)}{4} \ F_{(2)}^2 - \frac{1}{2} \ \partial_\mu \phi \partial^\mu \phi - V(\phi) \right]$$
$$F_{\mu\nu}^{(1)} = \partial_\mu A_\nu - \partial_\nu A_\mu, \ A_\mu^{(1)} = A_t(z) \delta_\mu^0 \qquad F_{\mu\nu}^{(2)} = q \ dy^1 \wedge dy^2, \ F_{23}^{(2)} = q$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \mathfrak{b}(z) \left[ -g(z)dt^{2} + dx^{2} + \left(\frac{z}{L}\right)^{2-\frac{2}{\nu}} dy_{1}^{2} + \left(\frac{z}{L}\right)^{2-\frac{2}{\nu}} dy_{2}^{2} + \frac{dz^{2}}{g(z)} \right]$$

I.A., K.R. JHEP 1805 206 (2018)

$$\mathfrak{b}(z) = e^{2\mathcal{A}(z)} -$$
quarks mass

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$S = \frac{1}{16\pi G_5} \int d^5 x \ \sqrt{-g} \left[ R - \frac{f_1(\phi)}{4} \ F_{(1)}^2 - \frac{f_2(\phi)}{4} \ F_{(2)}^2 - \frac{1}{2} \ \partial_\mu \phi \partial^\mu \phi - V(\phi) \right]$$
$$F_{\mu\nu}^{(1)} = \partial_\mu A_\nu - \partial_\nu A_\mu, \ A_\mu^{(1)} = A_t(z) \delta_\mu^0 \qquad F_{\mu\nu}^{(2)} = q \ dy^1 \wedge dy^2, \ F_{23}^{(2)} = q$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \mathfrak{b}(z) \left[ -g(z)dt^{2} + dx^{2} + \left(\frac{z}{L}\right)^{2-\frac{2}{\nu}} dy_{1}^{2} + \left(\frac{z}{L}\right)^{2-\frac{2}{\nu}} dy_{2}^{2} + \frac{dz^{2}}{g(z)} \right]$$

I.A., K.R. JHEP **1805** 206 (2018)

$$\mathfrak{b}(z) = e^{2\mathcal{A}(z)} -$$
quarks mass

 $\mathcal{A}(z) = -cz^2/4 \rightarrow \text{heavy quarks (b, t)}$  Andreev, Zakharov (2006)

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

$$S = \frac{1}{16\pi G_5} \int d^5 x \ \sqrt{-g} \left[ R - \frac{f_1(\phi)}{4} \ F_{(1)}^2 - \frac{f_2(\phi)}{4} \ F_{(2)}^2 - \frac{1}{2} \ \partial_\mu \phi \partial^\mu \phi - V(\phi) \right]$$
$$F_{\mu\nu}^{(1)} = \partial_\mu A_\nu - \partial_\nu A_\mu, \ A_\mu^{(1)} = A_t(z) \delta_\mu^0 \qquad F_{\mu\nu}^{(2)} = q \ dy^1 \wedge dy^2, \ F_{23}^{(2)} = q$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \mathfrak{b}(z) \left[ -g(z)dt^{2} + dx^{2} + \left(\frac{z}{L}\right)^{2-\frac{2}{\nu}} dy_{1}^{2} + \left(\frac{z}{L}\right)^{2-\frac{2}{\nu}} dy_{2}^{2} + \frac{dz^{2}}{g(z)} \right]$$

I.A., K.R. JHEP 1805 206 (2018)

$$\mathfrak{b}(z) = e^{2\mathcal{A}(z)} - \text{quarks mass}$$
$$\mathcal{A}(z) = -cz^2/4 \rightarrow \text{heavy quarks (b, t)} \quad \text{Andreev, Zakharov (2006)}$$
$$\mathcal{A}(z) = -a\ln(bz^2 + 1) \rightarrow \text{light quarks (d, u)} \quad \text{Li, Yang, Yuan (2017)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\mathcal{A}(z) = -a \ln(bz^2 + 1)$$
  $f_1 = e^{-cz^2 - \mathcal{A}(z)} z^{-2 + \frac{2}{\nu}}$ 

Boundary conditions:

 $A_t(0) = \mu, \ A_t(z_h) = 0, \qquad g(0) = 1, \ g(z_h) = 0, \qquad \phi(z_0) = 0$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\mathcal{A}(z) = -a\ln(bz^2 + 1)$$
  $f_1 = e^{-cz^2 - \mathcal{A}(z)} z^{-2 + \frac{2}{\nu}}$ 

Boundary conditions:

 $A_t(0) = \mu, \ A_t(z_h) = 0, \qquad g(0) = 1, \ g(z_h) = 0, \qquad \frac{\phi(z_0) = 0}{\text{next talk by P.S.}}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

$$\mathcal{A}(z) = -a\ln(bz^2 + 1)$$
  $f_1 = e^{-cz^2 - \mathcal{A}(z)} z^{-2 + \frac{2}{\nu}}$ 

Boundary conditions:

 $A_t(0) = \mu, \ A_t(z_h) = 0, \qquad g(0) = 1, \ g(z_h) = 0, \qquad \frac{\phi(z_0) = 0}{\text{next talk by P.S.}}$ 

$$A_t = \mu \; \frac{e^{cz^2} - e^{cz_h^2}}{1 - e^{cz_h^2}}$$

$$\begin{split} g &= 1 - \frac{\int_0^z \left(1 + b\,\xi^2\right)^{3a}\,\xi^{1+\frac{2}{\nu}}\,d\xi}{\int_0^{z_h} \left(1 + b\,\xi^2\right)^{3a}\,\xi^{1+\frac{2}{\nu}}\,d\xi} + \frac{2\mu^2c}{L^2\left(1 - e^{cz_h^2}\right)^2} \int_0^z e^{c\xi^2} \left(1 + b\,\xi^2\right)^{3a}\,\xi^{1+\frac{2}{\nu}}\,d\xi \\ &\times \left[1 - \frac{\int_0^z \left(1 + b\,\xi^2\right)^{3a}\,\xi^{1+\frac{2}{\nu}}\,d\xi}{\int_0^{z_h} \left(1 + b\,\xi^2\right)^{3a}\,\xi^{1+\frac{2}{\nu}}\,d\xi} \frac{\int_0^{z_h} e^{c\xi^2} \left(1 + b\,\xi^2\right)^{3a}\,\xi^{1+\frac{2}{\nu}}\,d\xi}{\int_0^z e^{c\xi^2} \left(1 + b\,\xi^2\right)^{3a}\,\xi^{1+\frac{2}{\nu}}\,d\xi}\right]. \end{split}$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

$$\phi = \int_{z_0}^{z} \frac{2\sqrt{\nu - 1 + (2(\nu - 1) + 9a\nu^2) b\xi^2 + (\nu - 1 + 3a(1 + 2a)\nu^2) b^2 \xi^4}}{(1 + b\xi^2) \nu \xi} d\xi$$

$$\nu > 1: z_0 \rightarrow 0 \rightarrow \phi(z) \sim \int_0^z dz/z$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\phi = \int_{z_0}^{z} \frac{2\sqrt{\nu - 1 + (2(\nu - 1) + 9a\nu^2) b\xi^2 + (\nu - 1 + 3a(1 + 2a)\nu^2) b^2\xi^4}}{(1 + b\xi^2) \nu\xi} d\xi$$

$$\nu > 1: z_0 \rightarrow 0 \rightarrow \phi(z) \sim \int_0^z dz/z$$



#### Thermodynamics

Black hole temperature  $\longleftrightarrow$  QGP temperature (Maldacena)

$$\begin{split} T &= \frac{|g'|}{4\pi} \Big|_{z=z_h} = \frac{1}{4\pi} \left| - \frac{\left(1 + bz_h^2\right)^{3a} z_h^{1+\frac{2}{\nu}}}{\int_0^{z_h} \left(1 + b\xi^2\right)^{3a} \xi^{1+\frac{2}{\nu}} d\xi} \right| 1 - \frac{2\mu^2 c \, e^{2cz_h^2}}{L^2 \left(1 - e^{cz_h^2}\right)^2} \times \\ & \times \left(1 - e^{-cz_h^2} \frac{\int_0^{z_h} e^{c\xi^2} \left(1 + b\xi^2\right)^{3a} \xi^{1+\frac{2}{\nu}} d\xi}{\int_0^{z_h} \left(1 + b\xi^2\right)^{3a} \xi^{1+\frac{2}{\nu}} d\xi} \right) \int_0^{z_h} \left(1 + b\xi^2\right)^{3a} \xi^{1+\frac{2}{\nu}} d\xi} \right] \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

#### Thermodynamics

Black hole temperature  $\longleftrightarrow$  QGP temperature (Maldacena)

$$\begin{split} T &= \frac{|g'|}{4\pi} \Big|_{z=z_h} = \frac{1}{4\pi} \Bigg| - \frac{\left(1 + bz_h^2\right)^{3a} z_h^{1+\frac{2}{\nu}}}{\int_0^{z_h} (1 + b\xi^2)^{3a} \xi^{1+\frac{2}{\nu}} d\xi} \Bigg| 1 - \frac{2\mu^2 c \, e^{2cz_h^2}}{L^2 \left(1 - e^{cz_h^2}\right)^2} \times \\ & \times \left(1 - e^{-cz_h^2} \frac{\int_0^{z_h} e^{c\xi^2} \left(1 + b\xi^2\right)^{3a} \xi^{1+\frac{2}{\nu}} d\xi}{\int_0^{z_h} (1 + b\xi^2)^{3a} \xi^{1+\frac{2}{\nu}} d\xi} \right) \int_0^{z_h} \left(1 + b\xi^2\right)^{3a} \xi^{1+\frac{2}{\nu}} d\xi \Bigg] \end{split}$$

 $Entropy \longleftrightarrow muliplicity of process (Landau)$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○

$$s = \left(\frac{L}{z_h}\right)^{1+\frac{2}{\nu}} \frac{\left(1+bz_h^2\right)^{-3a}}{4}$$

### Thermodynamics

Black hole temperature  $\longleftrightarrow$  QGP temperature (Maldacena)

$$\begin{split} T &= \frac{|g'|}{4\pi} \Big|_{z=z_h} = \frac{1}{4\pi} \left| -\frac{\left(1+bz_h^2\right)^{3a} z_h^{1+\frac{2}{\nu}}}{\int_0^{z_h} \left(1+b\xi^2\right)^{3a} \xi^{1+\frac{2}{\nu}} d\xi} \right| 1 - \frac{2\mu^2 c \, e^{2cz_h^2}}{L^2 \left(1-e^{cz_h^2}\right)^2} \times \\ & \times \left(1-e^{-cz_h^2} \frac{\int_0^{z_h} e^{c\xi^2} \left(1+b\xi^2\right)^{3a} \xi^{1+\frac{2}{\nu}} d\xi}{\int_0^{z_h} \left(1+b\xi^2\right)^{3a} \xi^{1+\frac{2}{\nu}} d\xi} \right) \int_0^{z_h} \left(1+b\xi^2\right)^{3a} \xi^{1+\frac{2}{\nu}} d\xi} \right] \end{split}$$

Entropy  $\leftrightarrow$  multiplicity of process (Landau) Free energy behavior  $\rightarrow$  phase transitions

$$s = \left(\frac{L}{z_h}\right)^{1+\frac{2}{\nu}} \frac{\left(1+bz_h^2\right)^{-3a}}{4} \qquad F = \int_{z_h}^{z_{h_2}} s \, dT = \int_{z_h}^{z_{h_2}} s \, T' dz$$

Peculiar features of model  $\leftarrow$  in  $T(z_h)$  (I.A. talk, Wednesday)

・ロト ・ 四ト ・ ヨト ・ ヨー ・ つへぐ

Free energy:  $\mu = 0$ 



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○

#### Temperature



#### Temporal Wilson loops

Nambu-Goto action for strings

 $S \sim \sigma_{DW} \ell$ 



 $X^0 \equiv t, \ X^1 \equiv x = \xi \cos \theta, \ X^2 \equiv y_1 = \xi \sin \theta, \ X^3 \equiv y_2 = const, \ X^4 \equiv z = z(\xi)$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○



▲ロト ▲囲 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)



▲ロト ▲囲 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○



▲ロト ▲課 ト ▲語 ト ▲語 ト → 語 → のへ(





▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー のへで



▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー のへで



▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● の Q @



▲ロト ▲圖ト ▲ヨト ▲ヨト 三百一 のへで



▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● の Q @



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ● ●



▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



▲ロト ▲圖ト ▲ヨト ▲ヨト 三百一 のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

#### For light quarks

- **9** 1-st order (Hawking-Page-like) phase transition line
  - starts from critical point for  $\nu < 1.05$  and from  $\mu = 0$  for  $\nu \ge 1.05$ ,
  - does not break at a relatively high temperature, but lasts till T = 0.

うして ふゆう ふほう ふほう ふしつ

- Longitudinal orientation of quarks pairs does not contribute to confinement/deconfinement phase transition.
- Transfer of the main role in the phase transition smooth, without jumps (as it was in heavy quarks model).

#### For light quarks

**9** 1-st order (Hawking-Page-like) phase transition line

- starts from critical point for  $\nu < 1.05$  and from  $\mu = 0$  for  $\nu \ge 1.05$ ,
- does not break at a relatively high temperature, but lasts till T = 0.

うして ふゆう ふほう ふほう ふしつ

- Output in the second second
- Transfer of the main role in the phase transition smooth, without jumps (as it was in heavy quarks model).

#### For light quarks

- **9** 1-st order (Hawking-Page-like) phase transition line
  - starts from critical point for  $\nu < 1.05$  and from  $\mu = 0$  for  $\nu \ge 1.05$ ,
  - does not break at a relatively high temperature, but lasts till T = 0.

うして ふゆう ふほう ふほう ふしつ

- Output in the second second
- Transfer of the main role in the phase transition smooth, without jumps (as it was in heavy quarks model).

#### For light quarks

**9** 1-st order (Hawking-Page-like) phase transition line

- starts from critical point for  $\nu < 1.05$  and from  $\mu = 0$  for  $\nu \ge 1.05$ ,
- does not break at a relatively high temperature, but lasts till T = 0.
- Output in the second second
- Transfer of the main role in the phase transition smooth, without jumps (as it was in heavy quarks model).

#### What's next?

Hybrid model: heavy&light quarks — all together now

# Thank you for your attention

The work is supported by RFBR grant  $\mathbb{N}18-02-40069$  mega

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで