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Introduction
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Introduction

Motivation

o The most intriguing region of the QCD phase diagram is a
subject of the nonperturbative study.

o We need a model that is capable to describe the matter
properties at finite T and pp in the nonpeturbative region.

@ The NJL model is a successful effective model, which describes
the spontaneous chiral symmetry breaking, formation of the
quark condensate and the chiral phase transition.

e Polyakov loop extention solves the problem of a lack of
deconfinement.

@ To describe the fluctuation we need to go beyond mean field
approximation (that’s why we use the Beth-Uhlenbeck approach).



PNJL Model

SU(3) PNJL model

The Lagrangian (Ratti, Thaler, Weise PRD (2006), P. Costa et al. PRD79, 116003 (2009); A.
Friesen et al. Phys.-Usp 59, 367 (2017)):

8

s S 1 —~ya p P a p

£ = aq(iy"Dy —m—rop)a+ 3G D_[(aNa)’ + (dinAa)’]
a=0

+ K{det[q(1+v5)a]+det[q(1l —5)al} - U@, &T)

D, = 0" —iA#, where A" is the gauge field with A® = —iA4 and A¥(x) = GSAg%
The effective potential has to reproduce the Lattice calculation in the pure gauge

sector:
U (@ 0;T) ba(T)- . by, 5 -5 by, .2
= <I><I>7€(<I> +®%) + - (20)7,
T To\? To\?
bQ(T)Zao-'ral (%)-‘1—&2 (%) + ag (%) .
We can:
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o explain and describe spontaneous chiral symmetry breaking as
mgq = mo + 2Gs < qq >;

o simulate the confinement/deconfinement transition

o build the phase diagram with crossover at low chemical potential and 1st
order transition at high chemical potential (mg # 0),



PNJL Model

The mean-field approximation

The grand potential density:

Q = U®D;T)+ G Z (@qi)* + 4K(ququ) (ada) (@sqs) — 2Ne Z /(

i=u,d,s i=u,d,s

2T Y /(; (NG (B) + N3 (B)

i=u,d,s"

with the functions

Nj(E) = Tre [In(1+Lie#® )] = [143 (@4 de B ) e Bl 4 98]

Ng(E)) = Tr. [ln(l + Le"/j(E"*‘“))} = [1 +3 (@ + q)e’ﬁE;) e PB4 e’wE;} s

where Eii =Ei Fu, 8=1/T, E; = /pi? + m? is the energy of quarks and (giq;) is
the quark condensate.
The equations of motion

o0 o0 o0
9or =% 55 Vg O

and gap equations:

m; = mo; + 4G < qiqi > +2K < gjq; >< qear >



PNJL Model

The mesons mass ug = 0

e S

The meson masses are defined by the Bethe-Salpeter equation at P = 0
1—Pyllj(Po =M,P=0)=0,

with
P7r = Gs +K <€lsq:s> 5 PK = Gs +K <QuQu>

and the polarization operator:
I (Po) = 4 (1, + B) — [P§ — (m; — my)?] L(Po))

where

) dp 1 ij d’p 1
L =iNe [ -=5 5=, L(Po)=iNc
1= / (2m)* p?2 —m?’ 2(Po) =1 / (2m)* (p? —m?)((p + Po)? — m7)

When T > Tyoe (Po > mj + m;) the meson — the resonance state —
PO = My — 1/21FM.



PNJL Model

The mesons mass up = 0: result
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Figure 1: The mass spectra at zero mup



PNJL Model

The model with finite pup and density
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Kaon to pion ratio

Can we apply the model to the 'horn’ description?

The model approach:

@ all mesons were created during
hadronization and we skip the

o AREEE! i rescattering, decays and so on..

&
X ot s @ freeze-out line is coincide with the
ot { ‘e v s chiral phase transition line (it is an
= EB802 e PHENIX
0 : 2 ansatz)

@ Experiment: for each energy of
collision we can find T* and uf of
the freeze-out

@ Experiment: we can rescale the data
as function of T™/ug

@ Theory: now we can calculate the
kaon to pion ratio as a function

g, GeV T/us where T and 1, are chosen

along the phase transition line.




Kaon to pion ratio

Can we apply the model to the "horn’ des
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Kaon to pion ratio

Kaon to pion ratio in PNJL model (Breit-Wigner
approximation)

035
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0O o5 1o 15 20 25 30 MHx = 0.135 (M. Kataja, P.V. Ruuskanen PLB 243, 181
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020 TRl 1
S 015 T
8, ™
= 010F 4

0.05 —PNJL

Chem. freezeout
00 A. V. Friesen, Yu. L. Kalinovsky, V. D. Toneev PRC 99,
B0~ 0z 0s 06 o8 10 12 045201 (2019)

He[GeV]



Results and discussion

Phase diagram improvements and kaon to pion ratio
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Results and discussion

The medium effect to the kaon to pion ratio

@ The meson spectra beyond the mean field
approximation can be obtained from the "polar”

representation
T ‘ ‘y ¥ T‘: 150 MeVH .
S (w, a) =[S} (w, ) D (1)
R e N with mesonic phase shift has the form

BT
om(w,q) = —m‘ctan{M}

e[Sm(w +1in,q)

o the bound state appears at the energy, where
the phase shift jumps up by the value 7
(Levinson’s theorem, Wergieluk:2012gd).

(scc for discussion A. Dubinin, D. Blaschke, A.
Radzhabov Phys. Rev. D 96, 094008 (2017))



Results and discussion

The medium effect to the kaon to pion ratio

o o The off-shell generalization of the number
density of the bosonic species,

o d d 1
o nm(T) = ?M/ iy / ggM (14 gm(w))om(w,
0

272

o the non-equilibrium medium dependent
o0 o ‘ chemical potential for pion and strange quark
e oo
1 (Wood-Saxon form, x = T/ugp)

max __ ,,min

min Mo K

Ha() = e e xRy
ps(x) = fs

1+ exp(—(x — xth)/Ax))’

mL ELgv=0s | parameters fitted to the experiment;

(see for discussion D. Blascke, G. Ropke, D.N.
Voskresensky, Particles 3(2020) 29)




Results and disc ion

Meson fluctuation and K/ ratio
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Results and discussion

Results and discussion

o Splitting of kaons masses at high densities = the difference in the
behaviour of the K/m at low energies;

@ The peak depends on properties of the matter (strangeness
neutrality, or chemical baryon potential of strange quark);

e Both K/m ratios are almost unaffected to the change of the order
of the chiral phase from first order to crossover (but more
sensitive to the slope of the phase diagram);

@ The sharpness of the "horn” is well explained by a Bose-enhanced
pion production for \/syn > 8 GeV;

o Breit-Wigner approximation not good for yields in the vicinity of
the Mott transition (i.e. freeze-out) because it neglects the
continuum which Beth-Uhlenbeck approach takes into account.



ngrgzlfe%%“\ S ObrigadoCrniacn60 ankl

OXdp1o,1e3=

o%

C
-3
5
Q
o
=<

- " s Obrigado .
- = H I
== Diolch g £

_ Werc s> s QE
A 25 a " Tack 0 uhq 5o
Q_yg = . O
=

:‘G"J_, =

B D mmkg Diolch, ==
i s AN UGrazid gz

iolch Gracias




	Introduction
	PNJL Model
	Kaon to pion ratio
	Results and discussion

