
Introduction
PNJL Model

Kaon to pion ratio
Results and discussion

Phase diagram structure and kaon-to-pion ratios
in the entanglement SU(3) PNJL model in

Breit-Wigner and Beth-Uhlenbeck approaches

D. Blaschke, A. V. Friesen, Yu. L. Kalinovsky, A. E. Radzhabov

Joint Institute for Nuclear Research, Dubna, Russia

Dubna, October 23, 2020

Content



Introduction
PNJL Model

Kaon to pion ratio
Results and discussion

Content

1 Introduction

2 PNJL Model

3 Kaon to pion ratio

4 Results and discussion

Content



Introduction
PNJL Model

Kaon to pion ratio
Results and discussion

Preface

Onset of deconfinement (possible signal):
characteristic enhanced production of pions ⇒
suppression of the strangeness-to-pion ratio (a
jump to plateau is a signal of deconfinement
and QGP formation ( SMES M. Gazdzicki, M.I.
Gorenstein, Acta Phys. Pol. B30, 2705 (1999)).
Low energies: first order transition (?)
the quick increase at low energies is a result of
the partial chiral symmetry restoration (A.
Palmese, et al. PRC 94, 044912 (2016)- PHSD;
K. Bugaev - statistical model; J. Nayak -
microscopic model).
The system-size dependence of the K/π ratio
(was shown by PHSD group))
was found by NA69/SHINE collaboration
The fireball creation (?)
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Motivation

The most intriguing region of the QCD phase diagram is a
subject of the nonperturbative study.
We need a model that is capable to describe the matter
properties at finite T and µB in the nonpeturbative region.
The NJL model is a successful effective model, which describes
the spontaneous chiral symmetry breaking, formation of the
quark condensate and the chiral phase transition.
Polyakov loop extention solves the problem of a lack of
deconfinement.
To describe the fluctuation we need to go beyond mean field
approximation (that’s why we use the Beth-Uhlenbeck approach).
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SU(3) PNJL model
The Lagrangian (Ratti, Thaler, Weise PRD (2006), P. Costa et al. PRD79, 116003 (2009); A.
Friesen et al. Phys.-Usp 59, 367 (2017)):

L = q̄ ( i γµDµ − m̂− γ0µ) q +
1
2
Gs

8∑
a=0

[ ( q̄λa q )
2

+ ( q̄ i γ5 λ
a q )

2
]

+ K {det [q̄ ( 1 + γ5 ) q ] + det [q̄ ( 1 − γ5 ) q ] } − U(Φ, Φ̄;T)

Dµ = ∂µ − iAµ, where Aµ is the gauge field with A0 = −iA4 and Aµ(x) = GsAµa
λa
2

The effective potential has to reproduce the Lattice calculation in the pure gauge
sector:

U
(
Φ, Φ̄;T

)
T4 = −b2 (T)

2
Φ̄Φ− b3

6
(
Φ3 + Φ̄3)+

b4

4
(
Φ̄Φ
)2
,

b2 (T) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

.

We can:

explain and describe spontaneous chiral symmetry breaking as
mq = m0 + 2Gs < q̄q >;
simulate the confinement/deconfinement transition
build the phase diagram with crossover at low chemical potential and 1st
order transition at high chemical potential (m0 6= 0),
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The mean-field approximation
The grand potential density:

Ω = U(Φ, Φ̄;T) + Gs
∑

i=u,d,s

〈q̄iqi〉2 + 4K〈q̄uqu〉〈q̄dqd〉〈q̄sqs〉 − 2Nc
∑

i=u,d,s

∫
d3p

(2π)3
Ei −

− 2T
∑

i=u,d,s

∫
d3p

(2π)3
(N+

Φ(Ei) + N−Φ(Ei))

with the functions

N+
Φ(Ei) = Trc

[
ln(1 + L†e−β(Ei−µi))

]
=
[
1 + 3

(
Φ + Φ̄e−βE+

i

)
e−βE+

i + e−3βE+
i

]
,

N−Φ(Ei) = Trc
[
ln(1 + Le−β(Ep+µi))

]
=
[
1 + 3

(
Φ̄ + Φe−βE−

p

)
e−βE−

p + e−3βE−
p

]
,

where E±i = Ei∓µi, β = 1/T, Ei =
√

pi2 + m2
i is the energy of quarks and 〈q̄iqi〉 is

the quark condensate.
The equations of motion

∂Ω

∂σf
= 0,

∂Ω

∂Φ
= 0,

∂Ω

∂Φ̄
= 0.

and gap equations:

mi = m0i + 4G < q̄iqi > +2K < q̄jqj >< q̄kqk >
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The mesons mass µB = 0

The meson masses are defined by the Bethe-Salpeter equation at P = 0

1− PijΠ
P
ij(P0 = M,P = 0) = 0 ,

with
Pπ = Gs + K 〈q̄sqs〉 , PK = Gs + K 〈q̄uqu〉

and the polarization operator:

ΠP
ij(P0) = 4

(
(Ii1 + Ij1)− [P2

0 − (mi −mj)
2] Iij2 (P0)

)
,

where

Ii1 = iNc

∫
d4p

(2π)4
1

p2 −m2
i
, Iij2 (P0) = iNc

∫
d4p

(2π)4
1

(p2 −m2
i )((p + P0)2 −m2

j )

When T > TMott (P0 > mi + mj) the meson → the resonance state →
P0 = MM − 1/2iΓM.
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The mesons mass µB = 0: result

Figure 1: The mass spectra at zero muB
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The model with finite µB and density

µu = µd;µs = 0.55µu, µB = 3µu, ρB =
ρu + ρd + ρs

3
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Can we apply the model to the ’horn’ description?

The experimental data

The model approach:
all mesons were created during
hadronization and we skip the
rescattering, decays and so on..

freeze-out line is coincide with the
chiral phase transition line (it is an
ansatz)

Experiment: for each energy of
collision we can find T∗ and µ∗

B of
the freeze-out

Experiment: we can rescale the data
as function of T∗/µ∗

B

Theory: now we can calculate the
kaon to pion ratio as a function
T/µB where T and µb are chosen
along the phase transition line.
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Kaon to pion ratio in PNJL model (Breit-Wigner
approximation)

nK± =

∫ ∞
0

p2dp
1

e(
√

p2+mK±∓µK± )/T − 1
,

nπ± =

∫ ∞
0

p2dp
1

e(
√

p2+mπ±∓µπ± )/T − 1
.

with parameters:
µπ = 0.135 (M. Kataja, P.V. Ruuskanen PLB 243, 181
(1990))
µK = µu − µs (see for example A. Lavagno and D.
Pigato, EPJ Web of Conferences 37, 09022 (2012)).

A. V. Friesen, Yu. L. Kalinovsky, V. D. Toneev PRC 99,
045201 (2019)
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Phase diagram improvements and kaon to pion ratio

Figure 2: µs = 0.55µu

introduction of a phenomenological
dependence of Gs(Φ)

G̃s(Φ) = Gs[1− α1ΦΦ̄− α2(Φ3 + Φ̄3)]

with α1 = α2 = 0.2. (Y. Sakai et al PRD
82, 076003 (2010), P. de Forcrand, O. Philipsen
NPB 642, 290(2002), A. Friesen et al.
IJMPA30, 1550089 (2015).)
the effect of vector interaction:

LV = −1
2
Gv

8∑
a=0

( q̄γµλa q )
2
,

G̃v(Φ) = Gv[1− α1ΦΦ̄− α2(Φ3 + Φ̄3)].
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The medium effect to the kaon to pion ratio
The meson spectra beyond the mean field
approximation can be obtained from the ”polar”
representation

SM
ij (ω, q) = |SM

ij (ω, q)| eiδM(ω,q), (1)

with mesonic phase shift has the form

δM(ω, q̄) = −arctan{ Im[SM(ω − iη, q̄)]−1

Re[SM(ω + iη, q̄)]−1 }

the bound state appears at the energy, where
the phase shift jumps up by the value π
(Levinson’s theorem, Wergieluk:2012gd).

(see for discussion A. Dubinin, D. Blaschke, A.
Radzhabov Phys. Rev. D 96, 094008 (2017))
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The medium effect to the kaon to pion ratio
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The off-shell generalization of the number
density of the bosonic species,

nM(T) =
dM

T

∫
dq q2

2π2

∫ ∞
0

dω
2π

gM(ω)(1 + gM(ω))δM(ω), (2)

the non-equilibrium medium dependent
chemical potential for pion and strange quark
(Wood-Saxon form, x = T/µB)

µπ(x) = µmin
π +

µmax
π − µmin

π

1 + exp(−(x− xth
π )/∆xπ))

,

µs(x) =
µmax

s

1 + exp(−(x− xth
s )/∆xs))

.

parameters fitted to the experiment;

(see for discussion D. Blascke, G. Röpke, D.N.
Voskresensky, Particles 3(2020) 29)
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Meson fluctuation and K/π ratio
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Results and discussion

Splitting of kaons masses at high densities ⇒ the difference in the
behaviour of the K/π at low energies;
The peak depends on properties of the matter (strangeness
neutrality, or chemical baryon potential of strange quark);
Both K/π ratios are almost unaffected to the change of the order
of the chiral phase from first order to crossover (but more
sensitive to the slope of the phase diagram);
The sharpness of the ”horn” is well explained by a Bose-enhanced
pion production for

√
sNN > 8 GeV;

Breit-Wigner approximation not good for yields in the vicinity of
the Mott transition (i.e. freeze-out) because it neglects the
continuum which Beth-Uhlenbeck approach takes into account.
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