Stability of shock
waves 1n anisotropic

hydrodynamaics

Kovalenko Aleksandr, Lebedev Physical Institute
The Conference "RFBR grants for NICA®, 23.10.2020



Anisotropy 1n heavy-ion collisions
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Anisotropy 1n heavy-ion collisions

0.1-0.3 fmic 1-3 fmic ~5-9 fm/c
CGC Glasma Boltzmann-Vlasov Transport Viscous Hydrodynamics

Anisotropic Hydrody i

Pi/PL <03

Expansion rate is much faster
n the interaction time scale
Ut »> U,

(Longitudinal Pressure)/(Transverse Pressure)
\ e
g
N
C
I

T,~Q Toen logT

- anisotropy required large correction to the viscos hydrodynamics
- there are regions of the phase space where the one-particle
distribution function is negative
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Relativistic anisotropic hydrodynamaics
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Relativistic anisotropic hydrodynamaics
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Shock waves 1n heavy-ion collisions
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Shock waves 1n heavy-ion collisions

< 25
.'g B trig
> - 40<p. <6.0GeVic
o i 1.0 < pi®* < 2.5 GeVic
. o ... ;f 24.5 -
o oo + @ - 5
c® ®©® P 241
OO :
L 235 —
4
| | l | 1 | !
23 0 1 2 3 4 5

«Azimuthal di-hadron correlations in d+Au and
Au+Au collisions at V¥ s NN = 200 GeV from STAR»




Junction condition
T, N*=T,N"

N* = (0, cosa, 0,sin ) - normal vector to the discontinuity surface
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Junction condition
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Junction condition
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Junction condition
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Junction condition
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Linear stability
I /\/\/ harmonic disturbance

normal shock wave
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Linear stability

Harmonic wave with small amplitude along the discontinuity surface

F(x,z) = zsina + zcosa — \e' [wi—k(zcosa—zsina)| _ 0

Disturbance affect only on quantities behind the discontinuity surface A’

(SA’ ~ ei(wt—kmx—kzz)

where £, = kcosa — ksina

k. — ksina + kcos a




Linear stability

Harmonic wave with small amplitude along the discontinuity surface

F(x,z) = zsina + zcosa — \e' [wi—k(zcosa—zsina)| _ 0

Disturbance affect only on quantities behind the discontinuity surface A’

(SA’ ~ ei(wt—kmx—kzz)

where £, = kcosa — ksina

k, = ksina + k cos Stability conditions
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Junction condition
T,,N* =T, N"
N* - normal vector to the discontinuity surface
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Linearized equation of motion
T, N*=T,N"
N* - normal vector to the discontinuity surface
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Linearized equation of motion: 9, 01" = ik, 0T"" = ()> ><




Linearized equation of motion
T, N*=T,N"
N* - normal vector to the discontinuity surface
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numeric methods




Results

1. Junction condition was studied in anisotropic case for normal shocks. The
amplification and attenuation of shock wave was shown depending on the angle to
the direction of the anisotropy. In contrast to the i1sotropic case, the angle of the
direction of movement of flow behind shock wave does not coincide with the normal
vector to the discontinuity surface, but increases according to the direction of
anisotropy in space.

2. The linear stability of shock waves against small harmonic perturbations in
anisotropic hydrodynamics was studied. Equations were obtained to estimate the
stability of shock waves.
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