



## REVIEW OF THE HADES EXPERIMENT

# Tetyana Galatyuk for the HADES Collaboration

GSI / TU Darmstadt

RFBR Grants for NICA | 20 - 23 Oct 2020





www.helmholtz.de

#### THE HADES PHYSICS CASE



HADES, Nature Phys. 15 (2019) 10, 1040-1045 A. Andronic *et al.*, Nature 561 (2018) no.7723 LQCD: S. Borsanyi *et al.* [Wuppertal-Budapest Collab.], JHEP 1009 (2010) 073 LQCD: A. Bazavov *et al.*, Phys.Lett.B 795 (2019) 15-21

- Explore high- $\mu_B$  region of the QCD phase diagram
- □ Focus on rare and penetrating probes
- Address various aspects of baryon-meson coupling

#### $\pi$ and p beams:

- Reference measurement (vacuum, cold nuclear matter)
- *em* structure of baryons/hyperons in time-like region
- **Heavy-ion collisions**  $\sqrt{s_{NN}} = 2 2.4 \text{ GeV}$ :
  - □ Microscopic properties of baryon dominated matter
  - Equation-of-State:
    - o E-b-e correlations and fluctuations
    - Flavour production and collective effects
    - o Dileptons

### LABORATORY STUDIES OF THE MATTER PROPERTIES (EoS) IN COMPACT STELLAR OBJECTS

Neutron Star merger (model calculations)



M. Hanauske, Journal of Phys.: Conf. Series 878 (2017) 012031 L. Rezzolla *et al.*, Phys. Rev. Lett. 122, no. 6, 061101 (2019) Au+Au  $\sqrt{s_{NN}} = 2.4 \ GeV$  (UrQMD)



- New since 2019 RICH photo camera, ECAL (5 sectors)
- In 2020 forward detector system Sraw Tracker, RPC
- For 2022 new MDC FEE and 100 kHz DAQ upgrade



- □ Accepted trigger rates:
  - $\Box$  8 kHz in Apr 2012 Au+Au  $\sqrt{s_{NN}} = 2.42 \ GeV$
  - □ 16 kHz in Mar 2019 Ag+Ag  $\sqrt{s_{NN}}$  = 2.55 GeV and  $\sqrt{s_{NN}}$  = 2.42 GeV
  - □ 50 kHz for hadron beams

# SOME BASIC FACTS ON HADES

### **EVENT SELECTION and PARTICLE IDENTIFICATION**

- Au beam on 15-fold segmented Au target
- $\Box$  7×10<sup>9</sup> events recorded
  - LVL1 trigger on 43% most central collisions
  - □ Min. bias events scaled down (factor 8)



- Velocity, Momentum
- □ dE/dx in MDC and ToF
- RICH information



### **EVENT CHARACTERIZATION ENTRALITY ESTIMATORS**

#### Centrality estimator

Off-line centrality selection based on hit or track multiplicity and/or Forward Wall (FW) integral charge

Centrality determination based on FW avoids bias on e-b-e fluctuation observables



HADES, Phys.Rev.C 102 (2020) 2, 024914

Using Glauber MC - distributions agree with transport model calculations (processed by GEANT and filtered with standard analysis code)

GlauberMC × NBD( $\mu$ , k) ×  $\epsilon(\alpha)$ 

Data min, bias

Data central (PT3)

30-40% 20-30%

100

50

0

HADES Au+Au 1.23 AGeV

0-10%

200

250

N<sub>hits</sub>

150

HADES, Eur.Phys.J.A 54 (2018) 5, 85



Based on hits of charged projectile spectators in the FW

Based on method by J.-Y. Ollitrault, arXiv:nucl-ex/9711003  $v_n = v_n^{obs} / \Re_n \qquad \Re_n = \langle \cos [n(\Psi_n - \Psi_{RP})] \rangle$ 

Resolution determined from sub-event resolution



HADES Collab., arXiv:2005.12217 [nucl-ex]



#### **BULK PROPERTIES OF THE MATTER**

### PIONS Au+Au $\sqrt{s_{NN}} = 2.42 \ GeV$

- ~1 pion per 10 baryons
- High statistics sample
- □ Large phase-space coverage



World data



J. W. Harris et al. , Phys. Rev. Lett. 58 (1987) 463 R. Averbeck et al. Phys. Rev. C 67 (2003), 024903 E895, J. L. Klay et al., Phys. Rev. C 68 (2003) 054905

FOPI, W.Reisdorf et al., Phys. A 781, 459 (2007) FOPI data 2.5  $\sigma$  above world data

HADES, Eur.Phys.J.A 56 (2020) 10, 259

#### **MICROSCOPIC DESCRIPTION**

#### Example for $\pi^-$ , same holds for $\pi^+$



Pion and Proton "Temperatures" in HIC R. Stock et al., Phys.Rev.Lett 1984

- □ Microscopic transport models consistently fail to describe the data
  - Main source of pions baryonic resonances propagating in hot and dense fireball

# **THERMAL EVENT GENERATOR (THERMINATOR 2)**

Extension of the model to not boost invariant systems S. Harabasz et al., arXiv:2003.12992 [nucl-th] (accepted by PRC)

- Freeze-out model: Siemens-Rasmussen
- $\Box \quad \text{Hubble-like expansion velocity profile } \beta = \tanh(Hr)$
- $\Box$   $\Delta$  spectral function from  $\pi N$  phase shift P.M. Lo et al., PRC 96 (2017) 015207



Good description of most abundant particles using a thermal model with only few simple assumptions!

### **CORRELATED PION-PROTON PAIR EMISSION**



- High statistics allows multi-differential analysis
- □ Next: Understanding of "kinematical" mass shift with S-matrix formalism
- Comparison to microscopic transport

UrQMD, T. Reichert et al., 2004.10539 [nucl-th]; Astron.Nachr. 340 (2019) 9-10, 1018-1022 Pok Man Lo, Eur. Phys.J. C77 (2017) no.8, 533 R. Dashen etal., Phys. Rev. 187 (1969) 345 R.Venugopalan et al., Nucl. Phys. A 546 (1992) 718 W. Weinhold, B. Friman, Phys. Lett. B 433 (1998) 236

#### **PROTONS AND LIGHT NUCLEI**



High statistic multi-differential data



Tetyana Galatyuk | HADES results | RFBR Grants for NICA | 20-23 Oct 2020

### **MACROSCOPIC DESCRIPTION OF YIELDS**

#### Including excited nuclei

V. Vovchenko H. Stoecker Comput.Phys.Commun. 244 (2019) 295



- Grand canonical ensemble  $(T, \mu_B, V)$
- Strangeness canonically suppressed at low T using a correlation radius  $R_c < RV$
- $\Box$  Include feed-down from <sup>4</sup>*He*, <sup>4</sup>*H*, <sup>4</sup>*Li* 
  - D. Hahn, H. Stöcker, Nucl.Phys.A 476 (1988) 718-772 E. Shuryak, J. M. Torres-Rincon Phys.Rev.C 101 (2020) 3, 034914

### **MACROSCOPIC DESCRIPTION OF YIELDS**

#### Including excited nuclei

V. Vovchenko H. Stoecker Comput.Phys.Commun. 244 (2019) 295



- Coupling of statistical particle production with a blast wave model
- Compare directly spectra including effects of blast and resonance decays

- Grand canonical ensemble  $(T, \mu_B, V)$
- □ Strangeness canonically suppressed at low *T* using a correlation radius  $R_c < RV$
- Include feed-down from <sup>4</sup>He, <sup>4</sup>H, <sup>4</sup>Li
   D. Hahn, H. Stöcker, Nucl.Phys.A 476 (1988) 718-772
   E. Shuryak, J. M. Torres-Rincon Phys.Rev.C 101 (2020) 3, 034914
- □ Hadron abundances described by *T*,  $\mu_B$ ,  $R_c$ ,  $R_V$ → But resulting in a large  $\chi^2 = 6$ →  $\chi^2 = 1.6$ , when strangeness excluded



1<sup>st</sup> time this kind of analysis in fixed-target experiment at  $\sqrt{s_{NN}} = 2.42 \ GeV$ 

Detailed systematic study of experimental and instrumental effects



#### **PROTON NUMBER FLUCTUATIONS**

#### **CRITICAL FLUCTUATIONS**

STAR, arXiv: 2001.02852 (resubmitted)



cf. B. Friman *et al.*, EPJC 71 (2011) 1694 M. Stephanov, Phys.Rev.Lett.107 (2011) 052301

 $\begin{array}{c|c} & \text{High moments} \quad S\sigma = \frac{\kappa_3}{\kappa_2} \quad k\sigma^2 = \frac{\kappa_4}{\kappa_2} \quad \kappa_2, \kappa_3, \kappa_4 \text{ cumulants} \\ & \text{of proton multiplicity distributions probe} \\ & \text{the structure of strong interaction matter} \end{array} \\ & \text{Direct link to EoS} \quad \frac{1}{VT^3} k_n = \frac{\partial^n \hat{p}}{\partial \hat{\mu}^n} \quad \begin{array}{c} \hat{p} = \frac{p}{T^4} \text{ reduced pressure} \\ & \hat{\mu} = \frac{\mu}{T} \text{ reduced chemical potential} \end{array}$ 

Ling, Stephanov, PRC 93, 034915 (2016) Cumulants  $k_n$  hold information on multi-particle correlators  $C_n$ 

Bzdak, Koch, Strodthoff, PRC 95, 054906 (2017)

Investigate  $C_n$  vs.  $\langle N_p \rangle$  to isolate relevant physics,  $C_n \propto \langle N_p \rangle^{\alpha}$ 

### $\langle N_P \rangle$ SCALING OF CORRELATORS $C_n$





#### SYSTEM WITH LONG-RANGE CORRELATIONS?

#### HADES, Phys.Lett.B 793 (2019) 457



- □ Universal scaling with participant number
- Does not reflect the hierarchy of NN production thresholds
  - $\Box$   $K^+\Lambda$ : -160 MeV
  - $\Box$   $K^+K^-: -470 MeV$
- Not expected if strangeness produced in *isolated* NN collisions

Scaling with absolute amount of strangeness not with individual hadron states

### **MESON CLOUD**

Exclusive analysis,  $e^+e^-$  invariant mass distribution ratio to point-like contributions



$$pp \rightarrow ppe^+e^-$$



- Studying the structure of the nucleon as an extended object
- Dominance of the N\*(1520) resonance
  - Contribution fixed by analysis of  $\pi^+\pi^-$  channel with PWA

Excitation of a baryon can be carried by the meson cloud

#### VDM form factor models

HADES, Phys.Rev.C 95 (2017) 065205

#### **DILEPTON EXCESS YIELD**

HADES Collab., Nature Physics 15 (2019) 1040

Au+Au √s<sub>NN</sub>=2.42 GeV 0-40%

NN ref.,  $\eta$ ,  $\omega$  subtracted

 $kT = 71.8 \pm 2.1 \text{ MeV}$ 



McLerran - Toimela formula, Phys. Rev. D 31 (1985) 545

- Thermal rates folded over coarse-grained medium evolution from transport works at low energies
- Radiation from a long-lived source ( $\tau \approx 13 \ fm$ ) in local thermal equilibrium
- ρ melts mass spectrum falls exponentially

   → slope measures radiating source T (no blue shift)



Mapping QCD caloric curve (T vs  $\varepsilon$ )

NA60: AIP Conf.Proc. (2010) 1322 HADES: Nature Physics 15 (2019) 1040 Rapp&Hess, PLB 753 (2016) 586 TG *et al.*: EPJA 52 (2016) 131

 $\begin{array}{c} -HSD \\ p \ coll.broad. + \Delta + \\ Bremss. (NN, \pi N) \\ \hline \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ M_{ee} \ (GeV/c^2) \end{array}$ 

In-medium p:

- CG SMASH

CG GSI-Texas A&M

- CG FRA

CG FRA: Phys. Rev. C 92, 014911 (2015) CG GSI-Texas A&M: Eur. Phys. J. A, 52 5 (2016) 131 CG SMASH: Phys.Rev.C 98 (2018) 5, 054908 HSD: Phys. Rev. C 87, 064907 (2013)

 $1/N_{\pi^0} dN_{excess}^{4\pi}/dM_{ee} (GeV/c^2)^{-1}$ 

10<sup>-4</sup>

10<sup>-5</sup>⊧

10<sup>-6</sup>

#### **MULTI-DIFFERENTIAL PATTERN OF DILEPTON RADIATION**

#### Dileptons carry invaluable information in terms of their four-momentum



#### **AZIMUTHAL ANISOTROPY**

### **TWO-PION INTENSITY INTERFEROMETRY**

#### 3D HBT ( $\pi^{-}\pi^{-}$ ) image of Au+Au collision zone



 $\Phi = \angle yb$  (long axis and impact parameter)

- Identical particle correlations from Au-Au collisions, a.f.o. relative event-plane angle  $\Phi$  and pair momentum
- Size modulations available for 6 bins in pair momentum
- Initial (nuclear overlap) eccentricity  $\square$ is relaxed at freeze-out  $\epsilon_{\text{initial}} > \epsilon_{\text{final}}$ .





HADES, Phys.Lett.B 795 (2019) 446-45 HADES, Eur.Phys.J.A 56 (2020) 5, 140

#### **PROTONS** and LIGHT NUCLEI $v_n$ , n = 1 - 6



Sensitivity to the EoS:  $p, d v_{2,3,4} \{ \psi_{RP} \}$  $V_{sk} = -124 \left( \frac{\rho_{int}}{\rho_0} \right) + 71 \left( \frac{\rho_{int}}{\rho_0} \right)^2$ 

UrQMD: P. Hillmann et al., J. Phys. G47 (2020) 055101

Rapidity dependense paramerized with  $v_{1,3,5}(y_{cm}) = ay_{cm} + by_{cm}^{3}$  $v_{2,4,6}(y_{cm}) = c + dy_{cm}^{2}$ 

HADES, arXiv:2005.12217 [nucl-ex]

### **3D PICTURE OF THE PARTICLE EMISSION PATTERN**

#### In momentum space



 $1 + 2\sum_{n=1}^{\infty} v_n \left( y_{cm} \right) \cos n \left( \phi - \psi_{RP} \right)$ 

With rapidity depend parameterisation n = 1 - 6 (see previous slide)

- At mid-rapidity
  - □ Almost elliptical shape
  - Odd coefficients consistent with zero
- □ Very forward/backward rapidities
- □ Triangular shape
- Interplay: central fireball pressure interaction with spectator matter

### **"IDEAL FLUID SCALING"**

#### Protons and light nuclei

- □ Ideal fluid dynamics predicts contribution to  $v_4$  from  $v_2$  at large  $p_t$ by  $v_4 = 0.5 v_2^2$
- □ Realistic hydro calculation at RHIC  $v_4/v_2^2 \sim 0.63$

N. Borghini and J.-Y. Ollitrault Phys.Lett. B642 (2006) 227-231

At mid-rapidity  $v_4/v_2^2$  for *p*, *d*, *t* are remarkably close to **0.5** 



#### **NOW and THEN**

#### Ag+Ag COLLISIONS AT $\sqrt{s_{NN}} = 2.55 \text{ GeV}$ (+3 DAYS RUN AT $\sqrt{s_{NN}} = 2.42 \text{ GeV}$ )

4 weeks run in Mar 2019,  $14 \times 10^9$  events on disk, 43% most central + downscaled min.bias







- Calibrations ongoing and full Monte-Carlo for efficiency corrections running.
- Performance of new RICH photo detector (with CBM) and ECAL at design value.

#### Ag+Ag COLLISIONS AT $\sqrt{s_{NN}} = 2.55 \text{ GeV}$ (+3 DAYS RUN AT $\sqrt{s_{NN}} = 2.42 \text{ GeV}$ )

#### 4 weeks run in Mar 2019, $14 \times 10^9$ events on disk, 43% most central + downscaled min.bias





# **RÉSUMÉ AND PROSPECTS**

#### Encouraging prospects for studying baryon dominated QCD matter with HADES

- □ Results from Au+Au collisions suggest a thermalized strongly interacting medium created at  $\sqrt{s_{NN}} = 2.42 \ GeV$ 
  - □ Thermal models fit yield and spectra
  - Data sensitive to the EoS (hydro description works)
  - □ Thermal origin of dilepton excess spectrum
  - System with long-range correlations (?)
- Complementary program on exclusive measurements in  $\pi$ , p induced reactions
- Strong scientific program for FAIR Phase-0
- ... and for FAIR Phase-1

#### movie FAIR status Apr 2020



#### THE HADES COLLABORATION

