

RFBR conference, JINR, Dubna, Russia 20-23 October 2020



# Event reconstruction and physics signal selection in the MPD experiment at NICA

<u>A.Zinchenko</u>, J.Drnoyan, V.Kolesnikov, A.Mudrokh, I.Rufanov, V.Vasendina, D.Zinchenko for the MPD collaboration VBLHEP, JINR, Dubna, Russia



This work was supported by the Russian Foundation for Basic Research (RFBR): grant No. 18-02-40060

### Outline



- > MPD / NICA project
- > Software requirements for physics observables
- Event reconstruction activity paradigm
- Current status of the MPD detector performance
- Inner Tracker performance
- Hyperon reconstruction
- > Hypernuclei reconstruction (new dE/dx & PID)
- Summary and outlook

# MPD / NICA project in HIC







QCD matter under extreme conditions (NICA niche – high  $\mu_B$ )

✓ NICA ( $\mu_B$  = [320-850] MeV) highest net baryon density: essential to probe deconfinement and CSR

 ✓ Non-trivial energy dependence of multiple probes: strangeness production, flow, hyperon polarization

✓ High luminosity guarantees
 sufficient event rate for rare probes
 (hypernuclei and multistrangeness)

#### PRC 94, 044912 (2016)



## NICA / MPD physics cases: Strangeness



- Excitation function of hadrons, including strangeness (yields, spectra, and ratios)
- Nuclear matter EOS, in-medium effects, and chemical equilibration can be probed
- > Hyperons sensitive to early stage and phase transformations in QCD medium
- Non-monotonic strangeness-to-entropy ratio seen in heaviest systems (phase transformation?)







System size and energy dependence is not fully understood

Theory predicts the largest effect for the hadron ratios due to CSR in dense matter

Lack of data on multistrangeness in different collision systems at NICA energies!

# MPD / NICA physics and software requirements



| Task and Observables                                           | Software requirements                                                                                                 |  |  |  |  |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Bulk properties, EOS                                           |                                                                                                                       |  |  |  |  |
| particle yields & spectra, ratios,<br>femtoscopy, flow         | PV & $V_0$ reconstruction, track reconstruction, PID                                                                  |  |  |  |  |
| In-Medium modification of hadron properties                    |                                                                                                                       |  |  |  |  |
| dileptons<br>resonances                                        | <i>ee</i> PID (conversion & hadron rejection, pion suppression factor: 4-5 orders of magnitude), track reconstruction |  |  |  |  |
| Deconfinement (chiral) phase transition at high r <sub>B</sub> |                                                                                                                       |  |  |  |  |
| strangeness production<br>Chiral Magnetic (Vortical) effect    | PV & $V_0$ reconstruction, track reconstruction, PID                                                                  |  |  |  |  |
| QCD Critical Point                                             |                                                                                                                       |  |  |  |  |
| event-by-event fluctuations and correlations                   | Kinks                                                                                                                 |  |  |  |  |
| YN, YY interactions in nuclear matter                          |                                                                                                                       |  |  |  |  |
| hypernuclei                                                    | PID of light nuclei ( $d$ , $t$ , $He^3$ , $He^4$ ), good vertexing                                                   |  |  |  |  |
| Charm ???                                                      |                                                                                                                       |  |  |  |  |
| Charm mesons                                                   | ITS tracking, perfect vertexing                                                                                       |  |  |  |  |

### Event reconstruction activity paradigm

- The core activity track reconstruction in different subdetectors. Good results require high quality input information, hence, attention is paid to lower level reconstruction tasks (e.g., cluster charge and hit coordinate reconstruction in TPC). This work relies on realistic simulation of the detector response, hence, detector response simulation is covered as well.
- Track reconstruction results are used for primary and secondary vertex finding and reconstruction of particle decays, and, eventually, for construction of some variables for physics analyses. They serve for quality checking of the tracking and provide feedback for the core task. Hence, higher level reconstruction tasks and even some physics (proto)analyses are also touched.

### MultiPurpose Detector @ NICA

- ✓ MPD collider detector with wide and uniform acceptance and sufficiently fast to study rare probes
- ✓ Hermeticity, homogenous acceptance :  $2\pi$  in azimuthal angle
- ✓ Highly efficient 3-D track reconstruction ( $|\eta|$ <1.8), high resolution vertexing
- ✓ Powerful PID:  $\pi/K$  up to 1.5 GeV/c, K/p up to 3 GeV/c, ECal for  $\gamma$ , *e*
- ✓ Careful event characterization: impact parameter & event plane reconstruction
- ✓ Minimal dead time, event rate capability up to ~ 6 kHz



Magnet: 0.5 T superconductor Tracking: TPC, ECT, IT ParticleID: TOF, ECal, TPC T0, Triggering: FD Centrality, Event plane: FHCal



### Realistic MPD tracking

#### Simulation procedure (digitization):

- Primary ionization (ionization clusters)
- > Drift and diffusion of ionization electrons
- ➢ Gas gain fluctuations (Polya distribution)
- Pad response (charge distribution on pad plane)
- Electronics shaping
- Signal digitization (ADC overflow)

### **Cluster / hit reconstruction**

- Precluster finder (group of adjacent pixels in time bin – pad space)
- ➢ Hit finder ("peak-and-valley" algorithm either in time bin – pad space (for simple topologies) or in time-transverse coordinate pixel space after Bayesian unfolding (for more complicated topologies)) → COG around local maxima



### **TPC parameters**

| Parameter                     | Value                                                           |
|-------------------------------|-----------------------------------------------------------------|
| Magnetic field                | 0.5 T                                                           |
| Drift gas                     | P10 (90% <i>Ar</i> + 10% <i>CH</i> <sub>4</sub> )               |
| Drift velocity                | 5.45 cm/µs                                                      |
| Transverse diffusion at 0.5 T | 185 μm/√cm                                                      |
| Longitudinal diffusion        | 320 μm/√cm                                                      |
| Pad size                      | 5x12 mm <sup>2</sup> (27 rows) + 5x18 mm <sup>2</sup> (26 rows) |
| Charge spread $\sigma$        | 0.196 mm                                                        |
| Electronics shaping time      | 180 ns (FWHM)                                                   |
| ADC dynamic range             | 10 bits                                                         |
| ADC sampling frequency        | 10 MHz                                                          |

### Cluster topologies and MLEM procedure





2D and 3D views of a precluster of three tracks. The true hit coordinates are indicated by circles, the reconstructed ones are shown by squares. On the top left plot one hit has not been reconstructed. Bottom – 2D and 3F views of the same precluster after the MLEM procedure.

3D view of a cluster with overflows. Top – ADC output; Bottom – after MLEM procedure .

### MPD tracking efficiency





#### Coordinate resolution





#### Double-hit resolution



### Track reconstruction



Two-pass Kalman filter with track seeding using outer hits (1<sup>st</sup> pass) or leftover inner hits (2<sup>nd</sup> pass)



rec. points = 4867, hits on tracks = 3127, tracks = 102



### Realistic MPD simulation and reconstruction





### Inner Tracker performance















#### More details in D.Zinchenko`s talk

### New dE/dx performance in TPC





#### More details in I.Rufanov`s talk

| dE/dx vs momentum for TPC/MPE    |  |  |  |  |
|----------------------------------|--|--|--|--|
| Box generator $(e, \pi, K, p)$ ; |  |  |  |  |
| Curves – STAR standard function  |  |  |  |  |
| (Bicshel's functions)            |  |  |  |  |
| [NIM A558 (2006) 419-429]        |  |  |  |  |

|                                      | ALICE             | STAR       | MPD        |  |  |
|--------------------------------------|-------------------|------------|------------|--|--|
| Gas                                  | 85% <i>Ne</i> mix | P10        | P10        |  |  |
| N rows x pitch (mm):                 |                   |            |            |  |  |
| Inner pads                           | 64 x 7.5 mm       | 13 x 12 mm | 26 x 12 mm |  |  |
| Outer pads                           | 64 x 10 mm        | 32 x 20 mm | 27 x 18 mm |  |  |
| Outer-2 pads                         | 32 x 32 mm        | _          | -          |  |  |
| P10 mixture $-90\% Ar$ . 10% methane |                   |            |            |  |  |

#### Data vs MC with old parameterization dE/dx in GEANT3:

Essentially (~20%) underpredicts relativistic rise of the ionization energy loss as seen from comparison of pion and electron bands
Overpredicts energy loss at low momentum (protons at *p*<1 GeV/c)</li>
Gives shifted momentum of intersections of electron and other particles bands

• Gives distorted input for realistic PID

New *dE/dx* parametrization (Garfield++) in GEANT gives a good agreement with STAR data

### New PID performance in TPC & TOF





### PID: Efficiency and Contamination





Eff. =  $\frac{\text{particles which are correctly identified}}{\text{all particles of a given species (PDG)}}$ 

Cont. =  $\frac{\text{particles which are falsely identified}}{\text{all identified particles of a given species}}$ 





✓ Generators: PHSD, Au+Au @ 11 GeV, min. bias, 8M events (~6 hours of running time at starting luminosity - 1/20 of design value)

✓ **Detectors:** start version of MPD with up-to-date TPC & TOF

✓ **Cluster / hit reconstruction:** precluster finder (group of adjacent pixels in time bin – pad space); hit finder ("peak-and-valley" algorithm either in time bin – pad space (for simple topologies) or in time-transverse coordinate pixel space after Bayesian unfolding (for more complicated topologies) )→ COG around local maxima

✓ **Track reconstruction:** two-pass Kalman filter with track seeding using outer hits (*1st pass*) or leftover inner hits (*2nd pass*)

- ✓ Track acceptance criterion:  $|\eta| < 1.3$ ,  $N_{hits} \ge 10$
- ✓ **Particle Identification:** dE/dx in TPC &  $m^2$  in TOF
- ✓ **Vertex reconstruction:** Kalman filter based formalism working on MpdParticle objects

### Analysis goals and Event topology



dcav0

π

 $\mathbf{V}0$ 

path⊿

### **Goals:**

- ✓ Secondary Vertex Reconstruction algorithms development for multistrangeness analysis
- Optimization of selection criteria in  $p_T$  and centrality
- ✓ Analysis macros for invariant spectra reconstruction
- Estimates of MPD efficiency and expected event rates

### Analysis method: Secondary Vertex Finding Technique



- $\triangleright$  PV primary vertex
- $\succ$  V<sub>0</sub> vertex of hyperon decay
- $\triangleright$  dca distance of the closest approach
- $\succ$  path decay length

Efficiency = (reconstructed, identified and selected Hyp at  $|\eta| < 1.3$ ) / (all generated *Hyp* after GEANT, radius  $\leq$  50 cm from PV) – *includes branching* ratios, detector acceptance and reconstruction efficiency

# $\Lambda, \overline{\Lambda}, \overline{\Xi}$ reconstruction





Eff. (for /y/<0.5) =14.1%





### Eff. (for /y/<0.5) =3.6%





# $\overline{\Xi}^+$ , $\Omega^-$ , $\overline{\Omega}^+$ reconstruction







Eff. (for /y/<0.5) =1.1%





#### Eff. (for /y/<0.5) =1.5%





### $\Lambda \& \Xi^{-}$ reconstruction: efficiency and $p_{T}$ spectra





### Data set for hypernuclei simulation

- ➢ Generators: DCM-QGSM, Au+Au @ 5 GeV, central, 0.9M events
- > **Detectors:** start version of MPD with up-to-date TPC & TOF
- Cluster / hit reconstruction: precluster finder (group of adjacent pixels in time bin pad space); hit finder ('peak-and-valley'' algorithm either in time bin pad space (for simple topologies) or in time-transverse coordinate pixel space after Bayesian unfolding (for more complicated topologies))
   COG around local maxima
- Track reconstruction: two-pass Kalman filter with track seeding using outer hits (*1st pass*) or leftover inner hits (*2nd pass*)
- > Track acceptance criterion:  $|\eta| < 1.3, N_{hits} \ge 10$
- > **NEW energy loss** simulation in gas TPC: Garfield++ parameterization in GEANT3
- > **NEW PID:** dE/dx in TPC &  $m^2$  in TOF
- Vertex reconstruction: Kalman filter based formalism working on MpdParticle objects

# Hypernuclei reconstruction





**Event topology:** PV – primary vertex  $V_0$  – vertex of hyperon decay dca – distance of the closest approach  $\checkmark$ path – decay length

<sup>3</sup>He

distance

dcaı

| Decay channel       | Branching ratio | Decay channel         | Branching ratio |
|---------------------|-----------------|-----------------------|-----------------|
| $\pi^- + {}^3He$    | 24.7%           | $\pi^- + p + p + n$   | 1.5%            |
| $\pi^{0} + {}^{3}H$ | 12.4%           | $\pi^{0} + n + n + p$ | 0.8%            |
| $\pi^- + p + d$     | 36.7%           | d + n                 | 0.2%            |
| $\pi^{0} + n + d$   | 18.4%           | p + n + n             | 1.5%            |

### Summary and outlook



- Current status of the event reconstruction activity in MPD has been presented and performance level achieved shown.
- Some work is still in progress track reconstruction in ITS for the upgrade project and TPC energy loss and response simulation and cluster / hit reconstruction.
- > Future MPD commissioning run will certainly have an impact on this activity.

### Thank you for attention!