

Study of production features, modeling and optimization of algorithms for reconstruction of short-lived hadronic resonances in the MPD experimental setup at the NICA collider

D. Ivanishchev, D. Kotov, M. Malaev, <u>V. Riabov</u>, Yu. Ryabov for the MPD Collaboration

Outline

- ❖ Motivation for resonance studies in heavy-ion collisions
- * Expectations for resonance properties in heavy-ion collisions at NICA energies
- ❖ Feasibility studies for resonance reconstruction at NICA-MPD
- **Summary**

Study of production features, modeling and optimization of algorithms for reconstruction of short-lived hadronic resonances in the MPD experimental setup at the NICA collider

FRBR project № 18-02-40038

D. Ivanishchev, D. Kotov, M. Malaev, V. Riabov*, Yu. Riabov

- ✓ study of the resonance properties in heavy-ion collisions at NICA
- ✓ feasibility studies for reconstruction of resonances in the MPD detector

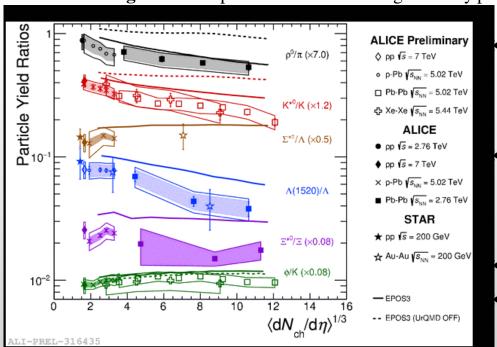
Resonances in heavy-ion collisions

❖ Wide variety of resonances in the PDG, most often/easily measured are:

ρ(770)	$K^*(892)^0$	K*(892)+	\(\phi(1020) \)	$\Sigma(1385)^{\pm}$	Λ(1520)	$\Xi(1530)$
$\frac{u\overline{u}+d\overline{d}}{\sqrt{2}}$	$d\overline{s}$	us	SS	uus dds	uds	uss

Particle	Mass (MeV/ c^2)	Width (MeV/ c^2)	Decay	BR (%)
ρ 0	770	150	π+π-	100
K*±	892	50.3	π±Ks	33.3
K*0	896	47.3	πK+	66.7
ф	1019	4.27	K+K-	48.9
Σ^{\star_+}	1383	36	π+Λ	87
Σ*-	1387	39.4	$\pi \Lambda$	87
Λ (1520)	1520	15.7	K⁻p	22.5
Λ(1520) Ξ ^{*0}	1532	9.1	π⁺Ξ	66.7

- ❖ Vacuum properties of the resonances are well defined (m, cτ, BR etc.)
- ❖ Copiously produced in heavy-ion collisions at ~ GeV energies, large branching ratios in hadronic decay channels → possible to measure
- Probe reaction dynamics and particle production mechanisms vs. system size and $\sqrt{s_{NN}}$:
 - \checkmark hadron chemistry and strangeness production, ϕ with hidden strangeness is one of the key probes
 - ✓ reaction dynamics and shape of particle p_T spectra, p/K^* , p/ϕ vs. p_T
 - ✓ lifetime and properties of the hadronic phase
 - ✓ spin alignment of vector mesons in rotating QGP (polarization of quarks from spin-orbital interactions)
 - ✓ flow, comparison with e^+e^- measurements, jet quenching, background for other probes etc.

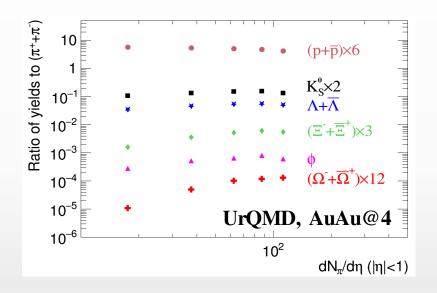

Hadronic phase and medium modifications

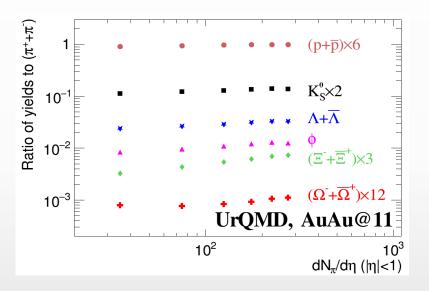
increasing lifetime								
	ρ(770)	K*(892)	Σ(1385)	Λ(1520)	王(1530)	φ(1020)		
cτ (fm/c)	1.3	4.2	5.5	12.7	21.7	46.2		
σ _{rescatt}	$\sigma_\pi \sigma_\pi$	$\sigma_\pi \sigma_K$	$\sigma_\pi\sigma_\Lambda$	$\sigma_K \sigma_p$	σπσΞ	$\sigma_K \sigma_K$		

- \clubsuit Resonances have small lifetimes of $c\tau \sim 1$ 45 fm, part of them decays in the fireball
- * Reconstructed resonance yields in heavy ion collisions are defined by:
 - ✓ resonance yields at chemical freeze-out
 - ✓ hadronic processes between chemical and kinetic freeze-outs:

rescattering: daughter particles undergo elastic scattering or pseudo-elastic scattering through a different resonance → parent particle is not reconstructed → loss of signal

regeneration: pseudo-elastic scattering of decay products ($\pi K \to K^{*0}$, $KK \to \phi$ etc.) \to increased yields

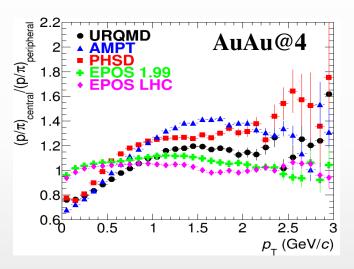

- SPS/RHIC/LHC observed multiplicity dependent suppression of ρ/π , K*/K, Λ */ Λ ratios, resonances with $c\tau \le 20$ fm/c. Ratios of longer lived resonances are not affected
- Results support the existence of a hadronic phase that lives long enough to cause a significant reduction of the reconstructed yields of short lived resonances
- Hadronic phase lifetime, $\tau \sim 10$ fm/c*
- NICA: $\langle dN_{ch}/d\eta \rangle^{1/3} \sim 6^{**} \rightarrow RHIC/LHC$ report modifications at such multiplicities

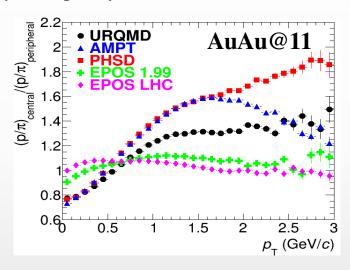

** PHENIX. Phys.Rev.C 93 (2016) 2, 024901

^{*} ALICE, Phys.Lett.B 802 (2020) 135225, Phys.Rev.C 99 (2019) 024905

Model predictions for resonances at NICA

- ❖ UrQMD, PHSD, AMPT, EPOS ...
- General predictions:
 - ✓ resonances are copiously produced and can be used to study physics of heavy-ion collisions
 - ✓ models predict enhanced production of particles with strangeness, for example UrQMD:

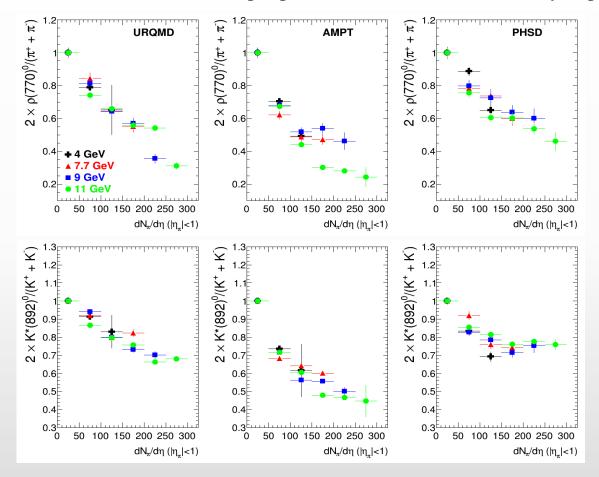




- > predictions of event generators are qualitatively similar
- > enhancement is more pronounced for particles containing a larger number of s-quarks
- relative enhancement is stronger at lower collision energies
- \triangleright $\phi(1020)$ meson with hidden strangeness (a key observable) behaves like a hadron with open strangeness

Model predictions for resonances at NICA

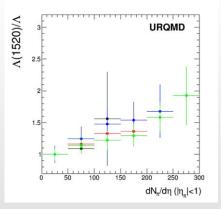
- ❖ UrQMD, PHSD, AMPT, EPOS ...
- **General predictions:**
 - ✓ resonances are still copiously produced and can be used to study physics of heavy-ion collisions
 - ✓ models predict enhanced production of particles with strangeness
 - ✓ baryon/meson (B/M) ratios evolve with centrality/multiplicity



- > strong model and collision energy dependence of B/M ratios
- redictions are qualitatively similar to experimental observations at RHIC and the LHC
- rigin of the evolution of B/M ratios is not understood (radial flow, quark recombination, ...)
- \triangleright measurements of p/ ϕ (1020) and p/K*(892) ratios will help to disentangle the mechanisms that shape the particle p_T spectra at low and intermediate momenta
- ❖ Eventually, model predictions (integrated yields, <p_T>, particle ratios etc.) should be compared to data to differentiate different model assumptions

Hadronic phase, Au+Au collisions at $\sqrt{s_{NN}}$ = 4-11 GeV

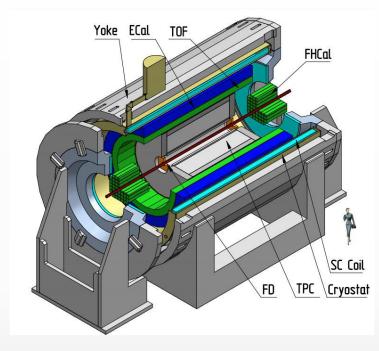

- ❖ Models with hadronic cascades (UrQMD, PHSD, AMPT) → properties of hadronic phase
- ❖ Ratios are shown normalized to most peripheral collisions → start at unity in peripheral collisions



- \triangleright models predict suppression of ρ/π and K*/K ratios in Au+Au@4-11, resonances with small ct
- suppression depends on the final state multiplicity rather than on collision energy
- modifications occur at low momentum as expected for the hadronic phase effects, ratios converge to unity at high momentum

Hadronic phase, Au+Au collisions at $\sqrt{s_{NN}}$ = 4-11 GeV

- ❖ Models with hadronic cascades (UrQMD, PHSD, AMPT) → properties of hadronic phase
- ❖ Ratios are shown normalized to most peripheral collisions → start at unity in peripheral collisions

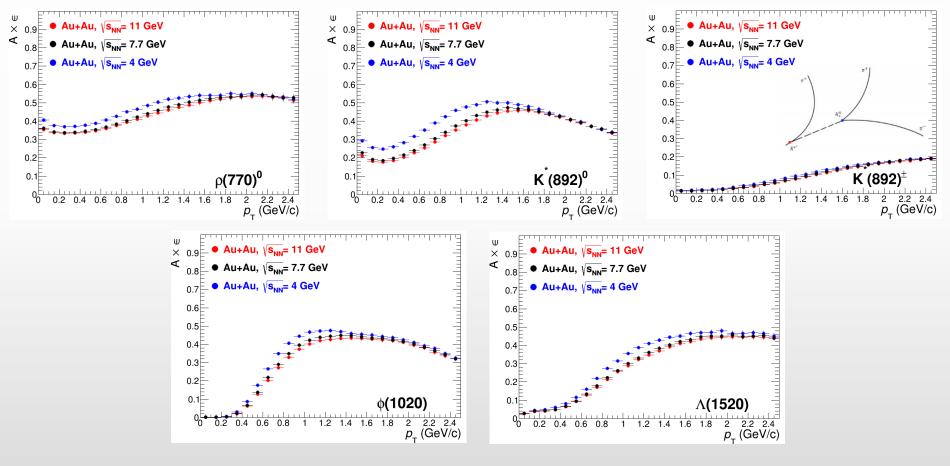


- φ(1020)/K ratio is predicted to be enhanced by UrQMD and PHSD and suppressed by AMPT
- $ightharpoonup \Lambda(1520)$ is available in UrQMD only, $\Lambda(1520)/\Lambda$ ratio gradually increases with multiplicity at all energies
- \blacktriangleright $\phi(1020)/K$ and $\Lambda(1520)/\Lambda$ ratios are consistent for different collision energies at similar multiplicities
- ❖ Models predict yield modifications qualitatively similar to those obtained at SPS/RHIC/LHC:
 - ✓ lifetime and density of the hadronic phase are high enough
 - modification of particle properties in the hadronic phase should be taken into account when model predictions for different observables are compared to data
 - ✓ study of short-lived resonances is a unique tool to tune the hadronic phase simulations

MPD experiment, Stage-1

- **❖** Stage-1: **TPC, TOF, FFD, FHCAL** u **ECAL**
- ❖ Startup in 2022
- ❖ Simulate AuAu@4-11 collisions using different event generators
- Propagate particles through the MPD, 'mpdroot':
 - ✓ Geant (v.3 or v.4) for particle transport
 - ✓ realistic simulation of subsystem response (raw signals)
 - ✓ track/signal reconstruction and pattern recognition
- **A** Basic event and track selections:
 - ✓ event selection: $|Z_{vrtx}|$ < 50 cm
 - ✓ track selection:
 - number of TPC hits > 24
 - $|\eta| < 1.0$
 - $|DCA \text{ to PV}| < 3\sigma \text{ for primary tracks}$
 - V0 topology cuts for weakly decaying secondaries
 - $p_T > 50 \text{ MeV/c}$
 - TPC-TOF combined $\pi/K/p$ PID
 - ✓ combinatorial background:
 - event mixing ($|\Delta_{Zvrtx}| \le 2$ cm, $|\Delta_{Mult}| \le 20$, $N_{ev} = 10$)

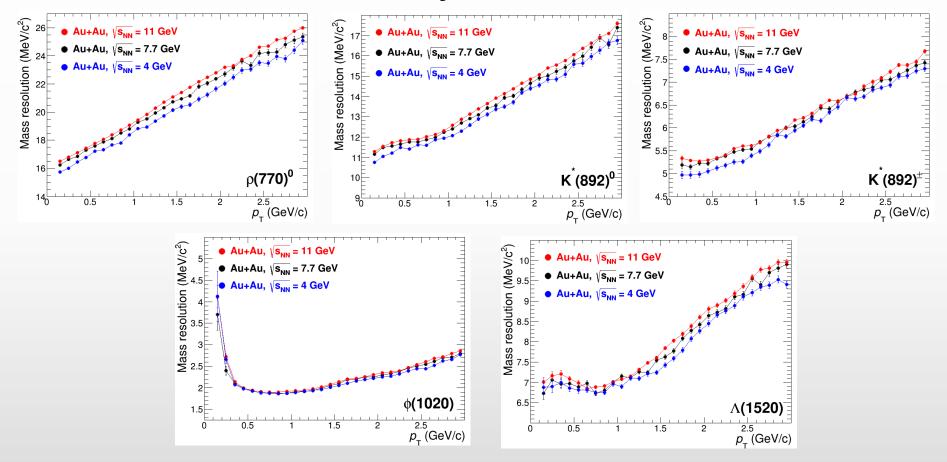
TPC: $|\Delta \varphi| < 2\pi$, $|\eta| \le 1.6$


TOF, EMC: $|\Delta \varphi| < 2\pi$, $|\eta| \le 1.4$

FFD: $|\Delta \varphi| < 2\pi$, 2.9 < $|\eta| < 3.3$

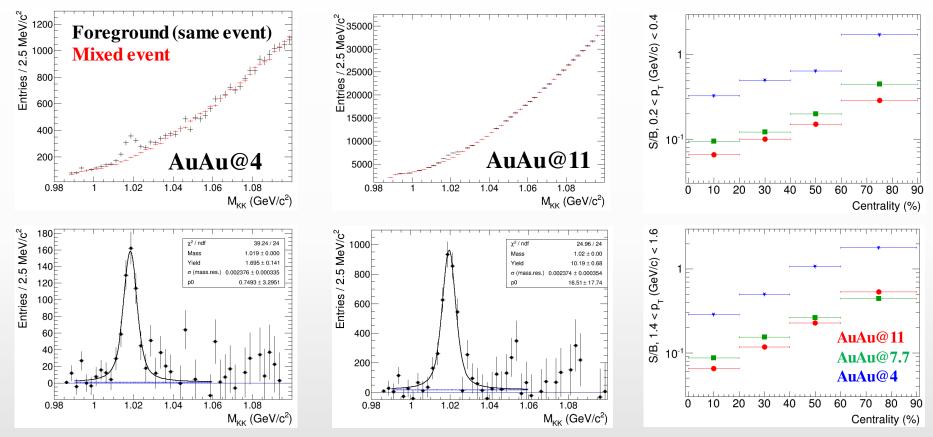
FHCAL: $|\Delta \varphi| < 2\pi$, 2 < $|\eta| < 5$

Reconstruction efficiency: $\rho(770)$, K*(892), $\phi(1020)$, $\Lambda(1520)$


❖ Typical reconstruction efficiencies (A x ∈) in AuAu @ 4, 7.7 and 11 GeV, |y| < 1

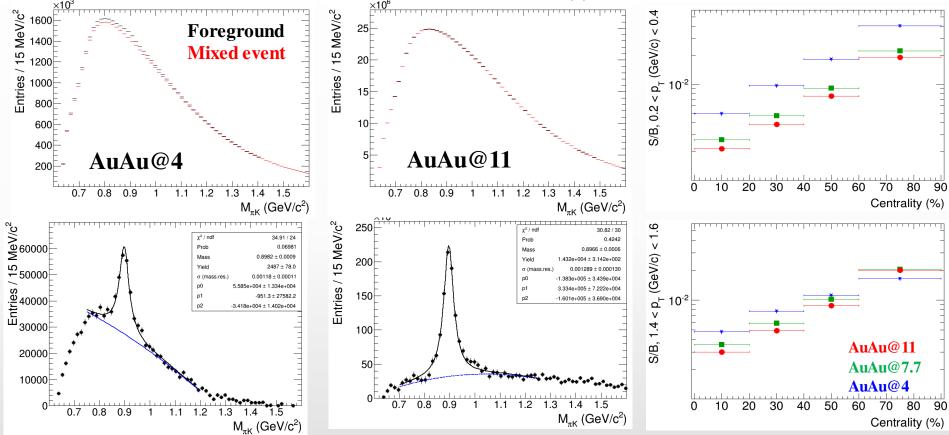
- * Reasonable efficiencies in the wide p_T range, |y| < 1
- Modest multiplicity (and/or $\sqrt{s_{NN}}$) dependence

Mass resolution: $\rho(770)$, K*(892), $\phi(1020)$, $\Lambda(1520)$


❖ Detector mass resolution $(m_{reconstructed} - m_{generated})$ in AuAu @ 4, 7.7 and 11 GeV, |y| < 1

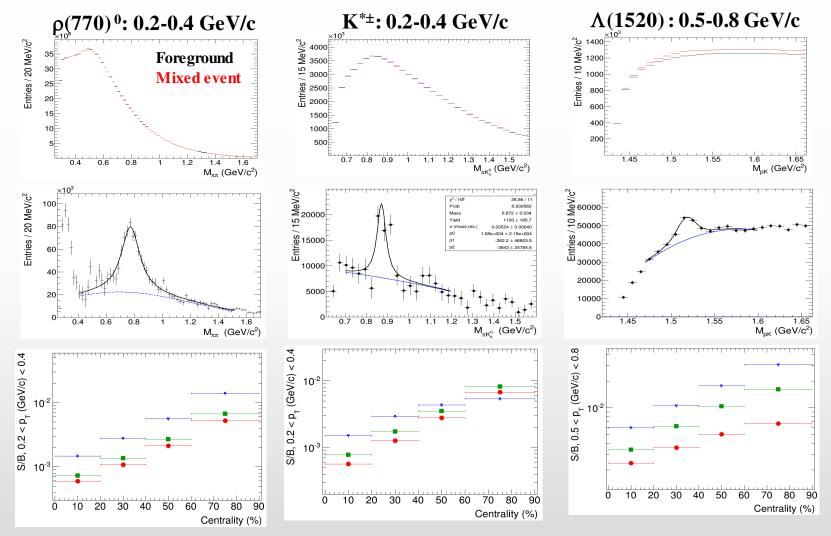
- ❖ Acceptable mass resolution
- Modest multiplicity (and/or $\sqrt{s_{NN}}$) dependence

\$\phi(1020)\$, reconstructed peaks


- ❖ UrQMD v.3.4: AuAu@11 (10M events), AuAu@7.7 (5M events), AuAu@4 (5M events)
- Full chain simulation and reconstruction, $p_T = 0.2-0.4 \text{ GeV/c}$, |y| < 1

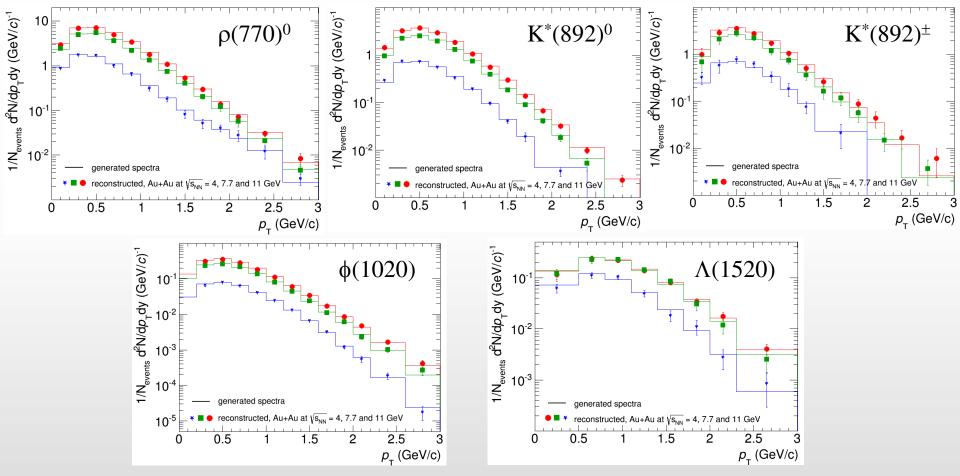
- ❖ Mixed-event combinatorial background is scaled to foreground at high mass and subtracted
- ❖ Distributions are fit to Voigtian function + polynomial
- \bullet Signal can be reconstructed at $p_T > 0.2$ GeV/c, high- p_T reach is limited by available statistics
- ❖ S/B ratios deteriorates with increasing centrality and collision energy

K*(892)⁰, reconstructed peaks


- ❖ UrQMD v.3.4: AuAu@11 (10M events), AuAu@7.7 (5M events), AuAu@4 (5M events)
- Full chain simulation and reconstruction, $p_T = 0.2 0.4 \text{ GeV/c}$, |y| < 1

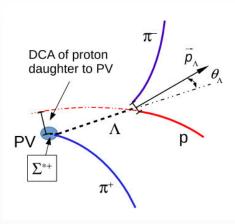
- ❖ Mixed-event combinatorial background is scaled to foreground at high mass and subtracted
- ❖ Distributions are fit to Voigtian function + polynomial
- \bullet Signal can be reconstructed at $p_T > 0.2$ GeV/c, high- p_T reach is limited by available statistics
- ❖ S/B ratios deteriorates with increasing centrality and collision energy

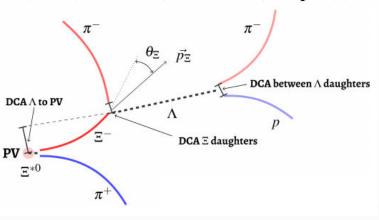
$K^*(892)$ and $\Lambda(1520)$, reconstructed peaks


❖ UrQMD v.3.4: AuAu@11 (10M events), **AuAu@7.7** (5M events), AuAu@4 (5M events), |y| < 1

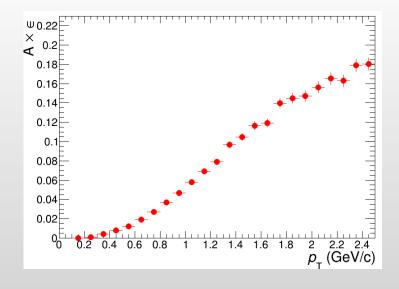
- Signal can be reconstructed from zero momentum, high-p_T reach is limited by statistics
- ❖ S/B ratios deteriorates with increasing centrality and collision energy

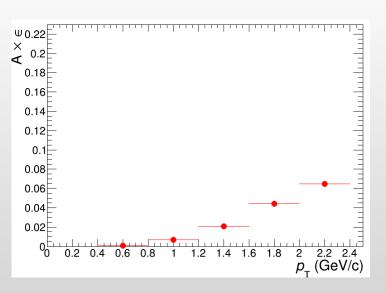
MC closure tests: ρ , $K^{*0,\pm}$, ϕ , Λ^*


- UrQMD v.3.4: AuAu@11 (10M events), AuAu@7.7 (5M events), AuAu@4 (5M events)
- Full chain simulation and reconstruction, p_T ranges are limited by the possibility to extract signals, |y| < 1

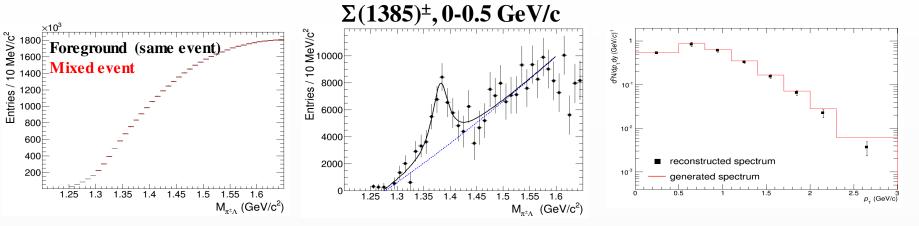

- * Reconstructed spectra match the generated ones within uncertainties
- ❖ Measurements are possible starting from ~ zero momentum, sample p_T spectra in a wide range
- ❖ Maximum raw yields (smallest stat. uncertainties) are extracted at ~ 300 MeV/c

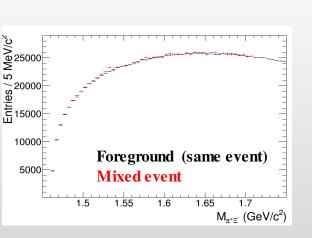
More complex decays: $\Sigma(1385)^{\pm}$, $\Xi(1530)^{0}$

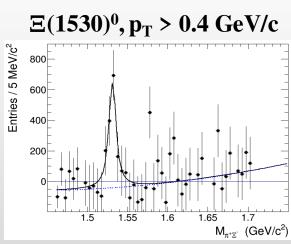

$$\Sigma(1385)^{\!\pm}\!\to\!\pi^{\!\pm}\Lambda\;(\Lambda\!\!\to\!\!p\pi)$$



$$\Xi(1530)^0 \rightarrow \pi^+\Xi^- (\Xi^- \rightarrow \Lambda \pi^-, (\Lambda \rightarrow p \pi^-))$$


❖ Typical reconstruction efficiencies (A $x \in$) in AuAu @ 11 GeV, |y| < 1




Reconstruction: $\Sigma(1385)^{\pm}$, $\Xi(1530)^{0}$

❖ UrQMD v.3.4: AuAu@11 (10M events), full chain simulation and reconstruction, |y| < 1

- $\Sigma(1385)^{\pm}$ signal can be reconstructed starting from zero momentum, high-p_T reach is limited by statistics
- Monte Carlo closure test is passed

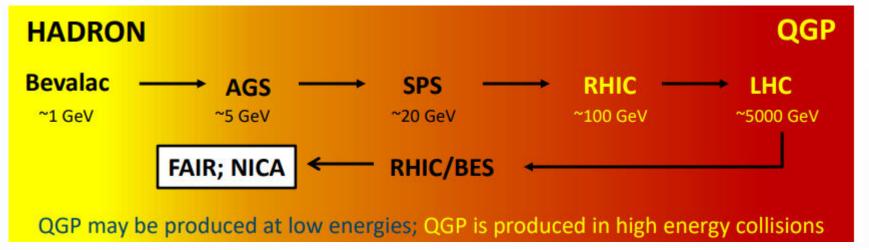
- For $\Xi(1530)^0$ observe a hint of a signal at $p_T > 0.4$ GeV/c, statistics-hungry measurement
- ❖ Larger data sample and embedded simulations are required

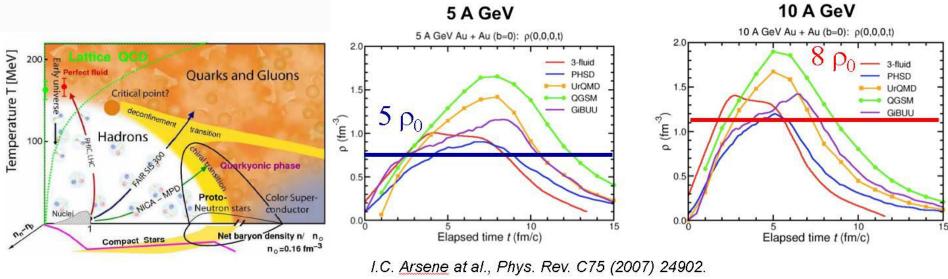
Summary

- ✓ Measurement of resonances contribute to the MPD physical program
- ✓ Resonances are expected to be very sensitive to the properties of the partonic/hadronic medium produced in heavy-ion collisions at NICA energies
- ✓ First-look measurements for resonances with the MPD detector are possible in a wide pT range from zero momentum up to ~ 3 GeV/c with ~ 10^7 sampled Au+Au collisions at $\sqrt{s_{NN}} = 4-11$ GeV → plausible for year-1 operation
- ✓ More detailed and multiplicity-dependent studies would require x10-50 larger statistics, especially for multi-stage decays of $K^*(892)^{\pm}$, $\Sigma(1385)^{\pm}$ and $\Xi(1520)^0$

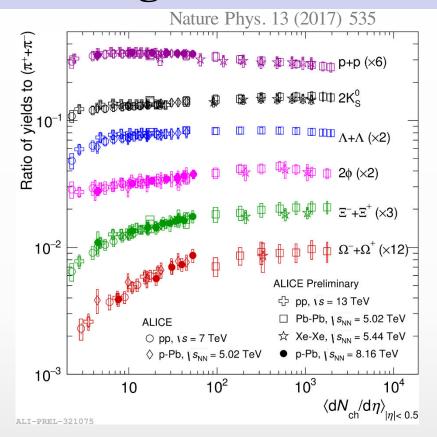
BACKUP

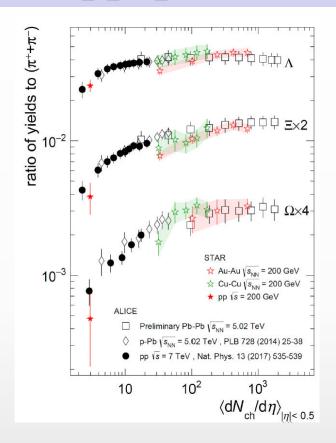
NICA complex





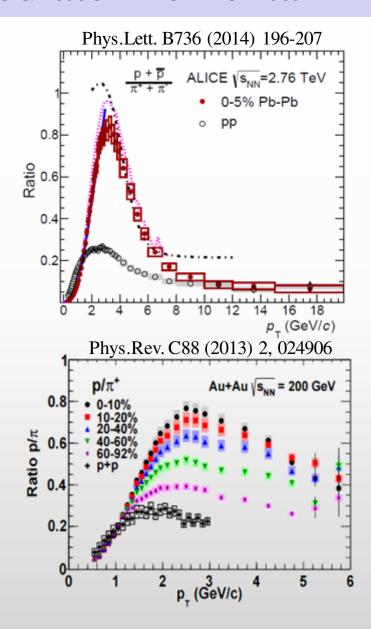
- ❖ Modernization of the existing Nuclotron facility
- ❖ Fixed target experiment: BM@N
- Construction of collider complex to collide:
 - ✓ heavy ions up to Au, $\sqrt{s_{NN}}$ = 4-11 GeV, $\mathcal{L} \sim 10^{27} \text{cm}^{-2} \text{s}^{-1}$
 - ✓ polarized p and d, $\sqrt{s_{NN}}$ = 27 GeV, $\mathcal{L} \sim 1032$ cm⁻²s⁻¹ (pp)
- ❖ Collider experiments: MPD, SPD
- ❖ NICA, MPD start of operation in 2021-2022


Heavy-ion collisions at NICA

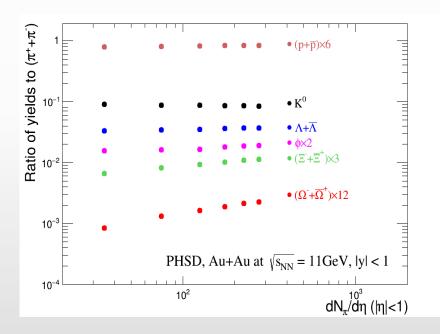


- ❖ Properties of the hot and dense QCD matter, phase transition to the QGP, critical point
- Regime of the maximum baryon density (phase transition at $\rho_c \sim 5\rho_0$) at NICA
- * Extension of modern heavy-ion programs at RHIC and the LHC to lower energies

Strangeness enhancement in pp, p-A and A-A



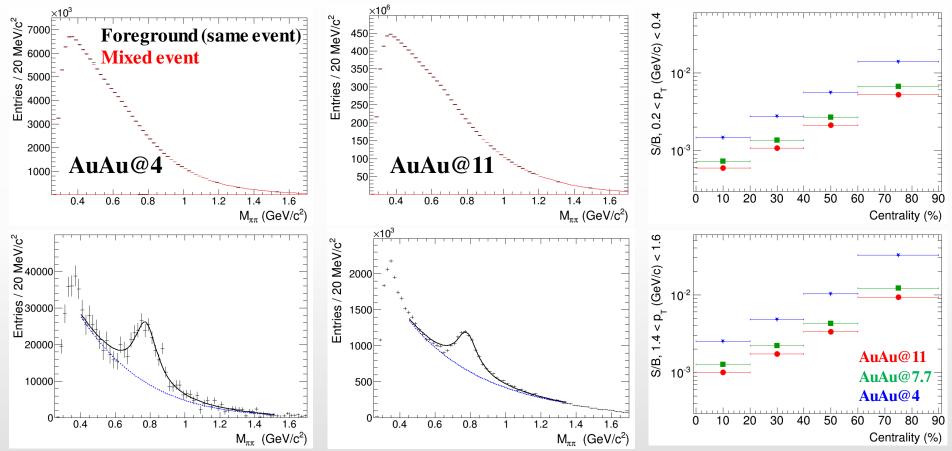
- Observed in heavy-ion collisions at AGS, SPS, RHIC and LHC;
- ❖ For the first time observed in pp and p-A collisions by ALICE at the LHC
- Observed as for ground-state hadrons as for resonances $(\phi/\pi, \Sigma^*/\pi, \Xi^*/\pi)$
- Strangeness production in A-A collisions is reproduced by statistical hadronization models. Canonical suppression models reproduce results in pp and p-A except for φ
- \diamond ϕ with hidden strangeness is not subject to canonical suppression $\rightarrow \phi$ is a key observable !!!


Hadronization at intermediate momenta

- **A** Baryon puzzle increased baryon-to-meson (p/ π , Λ/K_s^0 , Λ_c^+/D) ratios in heavy-ion collisions at RHIC and the LHC
- ❖ Driving force of enhancement is not yet fully understood:
 - ✓ particle mass (hydrodynamic flow)?
 - ✓ quark count (baryons vs. mesons)?
- \diamond ϕ and K^{*0} are well suited for tests as mesons with masses very close to that of a proton:
 - \checkmark $\Delta m_{\phi} \sim 80 \text{ MeV}/c^2$, $\Delta m_{K^*0} \sim -45 \text{ MeV}/c^2$

Model predictions for resonances at NICA

- ❖ UrQMD, PHSD, AMPT, EPOS ...
- **❖** General predictions:
 - ✓ resonances are still copiously produced and can be used to study physics of heavy-ion collisions
 - ✓ models predict enhanced production of particles with strangeness and different interplay of mechanisms responsible for shaping of the particle p_T spectra.



❖ Eventually, model predictions (integrated yields, <p_T>, particle ratios etc.) should be compared to data to differentiate different model assumptions

ρ(770), reconstructed peaks

- ❖ UrQMD v.3.4: AuAu@11 (10M events), AuAu@7.7 (5M events), AuAu@4 (5M events)
- Full chain simulation and reconstruction, $p_T = 0.2-0.4 \text{ GeV/c}$, |y| < 1

- ❖ Mixed-event background subtraction, fits to Voigtian function + polynomial
- Contributions from K_s , ω , K^{*0} , f_0 and f_2 are subtracted (need to be measured in advance)*
- Signal can be reconstructed at $p_T > 0$ GeV/c, high- p_T reach is limited by available statistics
- ❖ S/B ratios deteriorates with increasing centrality and collision energy

26

$\rho(770)$, signal extraction – practice tests

Phys.Rev. C99 (2019) no.6, 064901

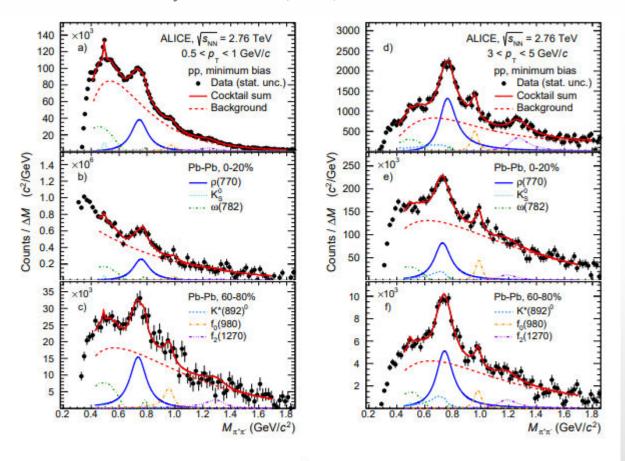


Fig. 1: (Color online) Invariant mass distributions for $\pi^+\pi^-$ pairs after subtraction of the like-sign background. Plots on the left and right are for the low and high transverse momentum intervals, respectively. Examples are shown for minimum bias pp, 0–20% and 60–80% central Pb–Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV. Solid red curves represent fits to the function described in the text. Colored dashed curves represent different components of the fit function, which includes a smooth remaining background as well as contributions from K_S^0 , ρ^0 , $\omega(782)$, $K^*(892)^0$, $f_0(980)$ and $f_2(1270)$. See text for details.