

Study of production of hyperons, strange mesons and search for hyper-nuclei in interactions of the carbon, argon and krypton beams in the BM@N experiment

M.Kapishin

RFBR grant 18-02-40036 mega

M.Kapishin

NICA Heavy Ion Complex

BM@N: heavy ion energy 1 – 3.8 GeV/n, beams: p to Au, Intensity ~few 10⁶ /s

Heavy Ion Collision Experiments

M.Kapishin

BM@N detector: March 2018

M.Kapishin

Λ hyperon production in 4A GeV Carbon-BM@N nucleus interactions

 $\Lambda \rightarrow p\pi^{-}$ decay reconstruction in Si+GEM tracker in C+C interaction

Event topology:

- \checkmark **PV** primary vertex
- ✓ V_0 vertex of hyperon decay
- \checkmark *dca* distance of the closest approach
- ✓ *path* decay length

Analysis without PID

Λ hyperon signals in 4A GeV Carbonnucleus interactions

BM@N

C beam 4 AGeV C + C,AI,Cu $\rightarrow \Lambda$ + X minimum bias Λ signal width 2.4 – 2.8 MeV

> C+C: 4.6M triggers C+AI: 5.3M triggers C+Cu: 5.3M triggers

2.5 days of data taking

A hyperon yield in 4A GeV Carbonnucleus min bias interactions

measured kinematic range $0.1 < p_T < 1.05$ GeV/c, 0.03 < y < 0.93data are corrected for acceptance and reconstruction efficiency

BM@N

- Yield of Λ in C+C, C+AI, C+ Cu minimum bias interactions in dependence on rapidity y* in c.m.s. $y^* = y_{lab}$ -1.17
- ► y* spectrum becomes softer with increase of target atomic weight
- Data compared with predictions of DCM-QGSM and UrQMD models

DCM-QGSM overestimates data in C+C interactions, but more compatible with data measured with heavier targets (C+Cu)

UrQMD predictions are more consistent with data in normalization

Λ hyperon invariant p_T spectra in 4A GeV BM@N Carbon-nucleus interactions

 Fit of invariant p_T spectra of Λ yields in C+C, C+AI, C+Cu minimum bias interactions by function:

 $1/p_T \cdot d^2 N/dp_T dy = A \cdot exp(-(m_T - m_A)/T), \quad m_T = \sqrt{(m_A^2 + p_T^2)}$

• Inv slope T in comparison with predictions of DCM-QGSM and UrQMD models

	<i>T</i> [MeV] <i>C</i> + <i>C</i>	<i>T</i> [MeV] <i>C</i> + <i>Al</i>	<i>T</i> [MeV] <i>C</i> + <i>Cu</i>
BM@N Preliminary	$113\pm14\pm11$	$146\pm19\pm15$	$170\pm24\pm20$
DCM-QGSM	124±4	123±4	130±4
UrQMD	105±4	123±4	133±4

M.Kapishin

Energy dependence of Λ hyperon yields BM@N in minimum bias C+C interactions

Next plans: → finalize results for 4 and 4.5 AGeV Carbon beam data

M.Kapishin

Ar+Cu interaction reconstructed in central tracker

Ar (3.2 AGeV) + Target $\rightarrow \Lambda + X$ Λ signal width 2.5 MeV

No PID used

Mass = 1.1157

1.18

1.16

Sigma = 0.0025 AIĪ. 2000

Background, 1455 Numb. of $\Lambda^0 = 544$

1.2

1.22

BM@N

Status of TOF-400 particle identification BM@N

h

Entries

Mean

Std Dev

 χ^2 / ndf

Constant

Mean Sigma

V.Plotnikov, M.Rumyantsev

First expected results:

Kr beam, proton, 2 < pg < 5

Ratio of K⁺/ π ⁺ in *argon* nucleus interactions at beam kinetic energy of **3.2 AGeV**

0.2

-0.2

0.5

0 45

M.Kapishin

30000

25000

20000

15000

10000

5000

Status of TOF-700 particle identification

L.Kovachev, Yu.Petukhov

Ar beam , 3.2 AGeV , Ar + Al,Cu,Sn \rightarrow X

Aim:

Yields of π , p, t, He³, d/He⁴ in *argon - nucleus* interactions (combination of ToF-400 and ToF-700)

Hybrid central tracker for high intensity heavy ion runs:JINR, MSU, GSI/FAIR,STS +GEM (after 2022)4 STS stations

Simulation of 1st stage of hybrid central tracker: 3 Forward Si + GEM

BM@N A.Zinchenko, V.Vasendina

3 Forward Si + 7 GEM

More details in talk of Alexander Zinchenko: Performance evaluation of the upgraded BM@N set-up for the strangeness production studies

3.5

p, GeV/c

3

 Shift 0 cm Shift 15 cm

3

2.5

2

1.5

2.5

M.Kapishin

1.2

0.8

0.6

0.4

0.2

0 0.5

1.2

0.8

0.6

0.4

0.2

0

0.5

3

1.5

Efficiency

STS

Hybrid STS + GEM tracker:
▶ 4 times increase in number of reconstructed tracks and ∧ hyperons

M.Kapishin

Heavy-ions A+A: Hypernuclei production

BM@N

In heavy-ion reactions: production of hypernuclei through coalescence of Λ with light fragments enhanced at high baryon densities

D Maximal yield predicted for $\sqrt{s}=4-5A$ GeV (stat. model) (interplay of Λ and light nuclei excitation function)

BM@N energy range is suited for search of hyper-nuclei

M.Kapishin

Simulation of hybrid central tracker for heavy ion runs: Ξ^{-} and ${}_{\Lambda}H^{3}$ reconstruction

BM@N

M.Kapishin

BM@N experiment

3

Analyses of BM@N experimental runs performed with carbon beam of 4 and 4.5 AGeV and argon beam of 3.2 AGeV on fixed targets are in progress:

- ► Preliminary physics results obtained on A yields in C + C, AI, Cu interactions at 4 AGeV
- \rightarrow aim to finalize results for 4 and 4.5 AGeV carbon beam data
- ► Signals of π , K, p, t, He³, d/He⁴ and Λ hyperons are identified in argon nucleus interactions
- \rightarrow aim to measure yields of mesons, Λ hyperons and nuclear fragments
- Feasibility studies of hybrid central tracker based on STS silicon and GEM detectors are performed to evaluate its performance to measure hyperons and light hyper-nuclei in heavy ion interactions

Thank you for attention!

M.Kapishin