The comparison of methods for elliptic flow measurements with the MPD Experiment at NICA

<u>Dim Idrisov</u>¹, Vinh Ba Luong¹, Nikolay Geraksiev^{2,3}, Arkadiy Taranenko¹, Alexander Demanov¹, Anton Truttse¹, Petr Parfenov¹

¹National Research Nuclear University MEPhl ²VBLHEP JINR ³FPT, Plovdiv University "Paisii Hilendarski"

For the MPD Collaboration

This work is supported by the RFBR according to the research project No. 18-02-40086

The Conference "RFBR Grants for NICA", 20-23 October 2020, Dubna, Russia

Outline

- Elliptic flow (v₂) at NICA energies
- Description of direct cumulant, event plane and scalar product methods
- Sensitivity of different methods to flow fluctuations and nonflow
- Feasibility study of elliptic flow (v₂) of identified hadrons and V0 particles in MPD (NICA):
 - Acceptance corrections
 - Elliptic flow of identified charged particles
 - Elliptic flow of V0 particles
 - Comparison of v₂ results for Bi+Bi and Au+Au collisions at $\sqrt{s_{NN}} = 7.7$ GeV
- Summary and outlook

Elliptic flow at NICA energies

MPD Experiment at NICA

Event plane, centrality:

FHCal (2<|η|<5) or TPC (|η|<1.5)

Time Projection Chamber (TPC)

➤Tracking of charged particles

within ($|\eta| < 1.5$, 2π in ϕ)

➢PID at low momenta

Time of Flight (TOF)

➢PID at high momenta

2<η<5 **FHCal**

Setup, event and track selection

Description of event plane and scalar product methods using TPC

Using
$$\mathbf{v}_2$$
 of produced particles in TPC to determine Q_n
 $u_n = \cos n\phi + i \sin n\phi = e^{in\phi}$ (1)
 $Q_n = \sum_{j=1}^M \omega_j e^{in\phi_j}, \quad X_n = \operatorname{Re}(Q_n), \quad Y_n = \operatorname{Im}(Q_n)$ (2)
 $\Psi_n = \tan^{-1} \left(\frac{Y_n}{X_n}\right) / n$ (3)

Event Plane:

$$R_{2}^{\text{EP}}\left\{\Psi_{2,\text{TPC}}\right\} = \sqrt{\left\langle\cos\left[2\left(\Psi_{2,\eta^{+}}-\Psi_{2,\eta^{-}}\right)\right]\right\rangle} \quad (4)$$

$$v_{2}^{\text{EP}}\left\{\Psi_{2,\text{TPC}}\right\} = \frac{\left\langle\cos\left[2\left(\varphi_{2,\eta^{\pm}}-\Psi_{2,\eta^{\mp}}\right)\right]\right\rangle}{R_{2}^{\text{EP}}\left\{\Psi_{2,\text{TPC}}\right\}} \quad (5)$$

Scalar Product:

$$v_{2}^{\text{SP}}\left\{Q_{2,\text{TPC}}\right\} = \frac{\left\langle u_{2,\eta\pm}Q_{2,\eta\mp}^{*}\right\rangle}{\sqrt{\left\langle Q_{2,\eta\pm}Q_{2,\eta\pm}^{*}\right\rangle}} \quad (6)$$

Left half (η <-0.05) $\rightarrow \eta_{-}$ Right half (η >0.05) $\rightarrow \eta_{+}$

Similar to methods used in L. Adamczyk, et al., Phys.Rev.C 86 (2012) 054908

Description of event plane method using FHCal

Using v_1 of particles in FHCal to determine Q_n

$$Q_{1,x} = \frac{\sum E_i \cos(\varphi_i)}{\sum E_i}, Q_{I,y} = \frac{\sum E_i \sin(\varphi_i)}{\sum E_i} \quad (1)$$
$$\Psi_{1,\text{FHCal}} = \text{ATan2}(Q_{1,y}, Q_{I,x}) \quad (2)$$

E – energy deposition in FHCal modules ($2 < |\eta| < 5$)

$$R_{2}\left\{\Psi_{1,\text{FHCal}}\right\} = \left\langle \cos\left[2\left(\Psi_{RP} - \Psi_{1,\text{FHCal}}\right)\right]\right\rangle \quad (3)$$

$$v_{2}\left\{\Psi_{1,\text{FHCal}}\right\} = \frac{\left\langle \cos\left[2\left(\varphi - \Psi_{1,\text{FHCal}}\right)\right]\right\rangle}{R_{2}\left\{\Psi_{1,\text{FHCal}}\right\}} \quad (4)$$

Energy distribution in FHCal

Description of direct cumulant method for flow measurements

2 and 4 particle azimuthal correlations

$$\langle 2 \rangle_n = \frac{|Q_n|^2 - M}{M(M-1)}$$
 (1) where $Q_n = \sum_{i=1}^M e^{in\varphi_i}$ (2)

$$\left\langle 4\right\rangle_{n} = \frac{\left|Q_{n}\right|^{4} + \left|Q_{2n}\right|^{2} - 2\left|Q_{2n}Q_{n}^{*}Q_{n}^{*}\right| - 4M(M-2)\left|Q_{n}\right|^{2} + 2M(M-3)}{M(M-1)(M-2)(M-3)}$$
(3)

Elliptic flow estimate with direct cumulant method

$$\langle 2 \rangle_n = \mathbf{v}_n^2 + \delta_n \qquad \langle 4 \rangle_n = \mathbf{v}_n^4 + 4\mathbf{v}_n^2\delta_n + 2\delta_n^2 \qquad (4)$$

$$\mathbf{v}_{n}\{2\} = \sqrt{\langle\langle 2\rangle\rangle} \qquad \mathbf{v}_{n}\{4\} = \sqrt[4]{2\langle\langle 2\rangle\rangle^{2} - \langle\langle 4\rangle\rangle} \qquad (5)$$

 δ – nonflow contribution (Bose-Einstein correlations, resonance decays, ...)

This method was introduced by Ante Bilandzic in Phys. Rev. C83:044913, 2011

v₂ of V0 particles: invariant mass fit method

Data set:

• 25 million events, UrQMD 3.4 non-hydro, 11.0 GeV, minbias

Geant4 simulation, full reconstruction with:

• TPCv7, TOFv7, FHCal

Centrality by TPC multiplicity, Event-plane method with FHCal Particle decays reconstructed with MpdParticle realistic cuts Differential flow signal extraction by bins in transverse momentum (or rapidity) with a simultaneous fit

$$v_{2}^{SB}(\mathbf{m}_{inv},\mathbf{p}_{T}) = v_{2}^{S}(\mathbf{p}_{T}) \frac{\mathbf{N}^{S}(\mathbf{m}_{inv},\mathbf{p}_{T})}{\mathbf{N}^{SB}(\mathbf{m}_{inv},\mathbf{p}_{T})} + v_{2}^{B}(\mathbf{m}_{inv},\mathbf{p}_{T}) \frac{\mathbf{N}^{B}(\mathbf{m}_{inv},\mathbf{p}_{T})}{\mathbf{N}^{SB}(\mathbf{m}_{inv},\mathbf{p}_{T})}$$

Non-uniform acceptance

How robust the future measurements against non-uniform acceptance?

Acceptance correction

The applied acceptance corrections eliminated the influence of non-uniform acceptance

Sensitivity of different methods to flow fluctuations

Elliptic flow fluctuations:

 $\sigma_{v_2}^2 = \left\langle v_2^2 \right\rangle - \left\langle v_2 \right\rangle^2$

The difference between v_2 {2} and v_2 {4}:

$$v_2\{2\} \approx \langle v_2 \rangle + \frac{1}{2} \frac{\sigma_{v_2}^2}{\langle v_2 \rangle}, v_2\{4\} \approx \langle v_2 \rangle - \frac{1}{2} \frac{\sigma_{v_2}^2}{\langle v_2 \rangle}$$

The difference between $v_2^{EP}\{\Psi_{1,FHCal}\}$ and $v_2^{EP}\{\Psi_{2,TPC}\}$:

$$v_2^{\text{EP}} \{ \Psi_{1,\text{FHCal}} \} \approx \langle v_2 \rangle, v_2^{\text{EP}} \{ \Psi_{2,\text{TPC}} \} \approx \langle v_2 \rangle + \frac{1}{2} \frac{\sigma_{v_2}^2}{\langle v_2 \rangle}$$

J. Adam et al. The ALICE Collaboration Phys. Rev. Lett. 116 (2016) 132302

Comparison of v2 measurements using different method

Performance study of v_2 of charged hadrons in MPD

Reconstructed (reco) and generated (true) v₂ values are in a good agreement for all methods

Performance study of v₂ of pions and protons in MPD

Reconstructed and generated v_2 of pions and protons have a good agreement for all methods

Performance study for v₂ of V0 particles

Reasonable agreement between reconstructed and generated v_2 signals for both K⁰ and A

Au+Au vs. Bi+Bi collisions for reconstructed data in MPD

TPC event plane

The results show a little difference for resolution and elliptic flow between two colliding systems

Au+Au vs. Bi+Bi collisions for reconstructed data in MPD

FHCal event plane

Expected small difference between colliding systems

Summary and outlook

- v₂ at NICA energies shows strong energy dependence:
 - > At $\sqrt{s_{NN}}$ =4.5 GeV v₂ from UrQMD, SMASH are in a good agreement with the experimental data
 - > At $\sqrt{s_{NN}} \ge 7.7$ GeV UrQMD, SMASH underestimate v_2 need hybrid models with QGP phase
 - Lack of existing differential measurements of v_2 (p_T , centrality, PID, ...)
- Comparison of methods for elliptic flow measurements using UrQMD model:
 - > The differences between methods are well understood and could be attributed to non-flow and fluctuations
- Feasibility study for elliptic flow in MPD:
 - > Acceptance corrections allows one to perform v_2 measurements with non-uniform acceptance in MPD
 - v₂ of identified charged hadrons: results from reconstructed and generated data are in a good agreement for all methods
 - v₂ of K⁰ and Λ particles: results from reconstructed (using invariant mass fits) and generated data are in a good agreement
- Small differences in v₂ for 2 colliding systems (Au+Au, Bi+Bi) were observed as expected

Outlook:

v₁,v₂ and v₃ measurements for the hybrid models (production of 60 M events for vHLLE+UrQMD at √s_{NN}= 11 GeV is ongoing)

Thank you for you attention

Backup

Setup, event and track selection

Relative elliptic flow fluctuations at 11.5 GeV and 7.7 GeV

Star data: L. Adamczyk et al. (STAR Collaboration). Phys. Rev. C 86, 054908 (2012)

- Relative v₂ fluctuations (v₂{4}/v₂{2}) observed by STAR experiment can be reproduced both in the string/cascade models (UrQMD, SMASH) and hybrid model (AMPT with string melting)
 - Dominant source of v₂ fluctuations: participant eccentricity fluctuations in the initial geometry

Results for v₂ from UrQMD model of Au+Au collisions at $\sqrt{s_{NN}} = 7.7$ GeV

 v_2 {4} is smaller than v_2 {2} due to fluctuations and nonflow

Description of event plane method

$$\mathbf{Q}_n = \sum_{j=1}^N w_n(j) \, e^{in\phi_j} = |\mathbf{Q}_n| \, e^{in\Phi_n} \qquad (1)$$

$$Q_n \cos(n\Psi_n) = X_n = \sum_i w_i \cos(n\phi_i),$$
$$Q_n \sin(n\Psi_n) = Y_n = \sum_i w_i \sin(n\phi_i),$$

$$\Psi_n = \left(\tan^{-1} \frac{\sum_i w_i \sin(n\phi_i)}{\sum_i w_i \cos(n\phi_i)} \right) / n$$
 (2)

• η -sub EP method: resolution of the reaction plane Ψ_2 obtained from 2 sub-events

LeftRight-1.5 <
$$\eta$$
 < -0.050.05 < η < 1.5Left half (η <-0.05) $\rightarrow \eta$.

Right half ($\eta{>}0.05) \rightarrow \eta_{+}$

$$v_{2}\{\eta \text{-sub,EP}\} = \frac{\langle \cos[n(\phi_{\eta\pm} - \Psi_{2,\eta\mp})]\rangle}{\sqrt{\langle \cos[n(\Psi_{2,\eta\pm} - \Psi_{2,\eta-})]\rangle}}$$
(3)

Description of scalar product method

$$u_n = \cos n\phi + i\sin n\phi = e^{in\phi} \qquad (1)$$

$$Q_n = \sum_{j=1}^{M} u_{n,j} = \sum_{j=1}^{M} e^{in\varphi_j}$$
 (2)

- u_n particle unit vector
- Q_n event flow vector(Q-vector)
- Elliptic flow measured using correlation between u_n and Q_n

Left	Right
-1.5 < η < -0.05	0.05 < η < 1.5

Left half (η <-0.05) $\rightarrow \eta_{-}$ Right half (η >0.05) $\rightarrow \eta_{+}$

$$\mathbf{v}_{2}^{SP}\{Q_{2,\mathrm{TPC}}\} = \frac{\left\langle u_{2,\eta\pm}Q_{2,\eta\mp}^{*}\right\rangle}{\sqrt{\left\langle Q_{2,\eta\mp}Q_{2,\eta\mp}^{*}\right\rangle}} \quad (3)$$

Results for v₂ for reconstructed events of MPD

27

Eccintricity: Bi+Bi vs Au+Au

UrQMD model predicts small difference between ϵ_n of Au+Au and Bi+Bi

Sensitivity of different orders cumulants to elliptic flow fluctuations

 How fluctuations affect the measured values of V_n. The effect of the fluctuations on V_n estimates can be obtained from

$$\langle \mathbf{v}_n^2 \rangle = \overline{\mathbf{v}}_n^2 + \sigma_{\mathbf{v}_n}^2, \quad \langle \mathbf{v}_n^4 \rangle = \overline{\mathbf{v}}_n^4 + 6\sigma_{\mathbf{v}_n}^2 \overline{\mathbf{v}}_n^2$$

 $\mathbf{v}_n\{2\} = \sqrt{\langle \mathbf{v}_n^2 \rangle}, \quad \mathbf{v}_n\{4\} = \sqrt[4]{2\langle \mathbf{v}_n^2 \rangle^2 - \langle \mathbf{v}_n^4 \rangle}$

The difference between v_n{2} and v_n{4} is sensitive to not only nonflow but also to the event-by-event v_n fluctuations.

$$\mathbf{v}_n\{2\} = \overline{\mathbf{v}}_n + \frac{1}{2} \frac{\sigma_{\overline{\mathbf{v}}_n}^2}{\overline{\mathbf{v}}_n}, \quad \mathbf{v}_n\{4\} = \overline{\mathbf{v}}_n - \frac{1}{2} \frac{\sigma_{\overline{\mathbf{v}}_n}^2}{\overline{\mathbf{v}}_n}$$

The difference between v_n {2} with and without $\Delta \eta$ gap is driven by the contribution from nonflow

Ilya Selyuzhenkov for the ALICE collaboration, Prog.Theor.Phys.Suppl. 193 (2012) 153-158

Cumulant results from Beam Energy Scans

The magnitude and trend of the fluctuations, have weak beam energy dependence Methods of flow measurements have different sensitivity to flow fluctuations

Cumulant results from Beam Energy Scans

Comprasssion of (a) v_2 {2} vs. $\langle N_{ch} \rangle$, (b) v_2 {4} vs. $\langle N_{ch} \rangle$ and (c) thir ratio for Au+Au collisions

Niseem Magdy, Nucl.Phys.A 982 (2019) 255-258

arXiv:1807.07638

v₂ versus transverse momentum for protons measured in semi-central events and around mid-rapidity.

N. Bastid, et al., Phys.Rev. C72 (2005) 011901

arXiv:nucl-ex/0504002

Results for v₂ from UrQMD model of Au+Au collisions at $\sqrt{s_{NN}} = 7.7$ GeV

• Total number of generated minimum bias

events - 88 M

• Particle selection: charged hadrons,

 $0.2 < p_T < 3 \text{ GeV/c}$

- Configuration of cumulant method:
 - 1. RFP and POI: charged hadrons;
 - 2. calculations were performed taking into account

the effect of autocorrelation

• All 3 methods have the same kinematical cuts

Left	Right
-1.5 < η < -0.05	υ.υ5 < η < 1.5

Left half (η <-0.05) $\rightarrow \eta_{-}$ Right half (η >0.05) $\rightarrow \eta_{+}$

Results for v₂ for reconstructed events of MPD

33