

Development of data concentration method and its implementation in radiationtolerant CMOS ASIC

Eduard ATKIN, evatkin@mephi.ru

RUSSIAN FOUNDATION FOR BASIC RESEARCH

The project is supported by RFBR grant no. 18-02-40093 (headed by V. Samsonov)

Outline

- Motivation
- Expected applications (MPD TPC or/and BM@N STS)
- Common tasks and selected approbation
- ASIC designation & environment
- Design route
- Specifications
- Features & building blocks
- ASIC block diagram
- External interfaces
- Pinout & Bonding
- Further plans & conclusions

Motivation

- General project for MPD и BM&N
- The experimental set-ups contain up to 10**5 detector channels, ended by up to 10 bit ADCs and thus generate a large amount of digital data
- Needs to use a very limited number of higher-speed output links both for data transfer and control
- Necessity to process data on-detector in a non-friendly radiation environment
- Absence of COTs ready to use

Common tasks

- High granularity and accuracy of the detecting equipment require a high integration, thus impose use of ASIC technology
- Development of a method for processing a large amount of data, generated at multichannel (up to 10**5 chs) detector FEE, ended by high-speed (10-20 Mbit/s) high-resolution (up to 10 bit) ADCs
- Data, coming from the FEE, should proceed through a synchronized deserialization, sequencing, noise-free and fault-free encoding, output serialization and then be transmitted via high-speed interface links at a gigabit rates
- Approbation method of data concentration based on own ASICs since no available COTs
- Development of approaches to be used to provide radiation tolerance of the designed ASICs

Approbation

(replacement of non rad-hard FPGA in MPD TPC FEE cards)

SAMPA FEC Top view (service)

Non-radiation tolerant FPGA

S.Movchan et al. MPD/NICA TPC status, INSTR-2020, Novosibirsk, Russia, Feb 24-28 2020

ASIC designation

- HUB v1 is a radiation tolerant prototype ASIC that can be used to implement multi purpose high speed bidirectional links for MPD TPC FEE.
- ASIC supports two 1m 2.56 Gb/s links in the direction from detectors to the counting room (Uplink) and one 1m 2.56 Gb/s link in the direction from counting room to the detectors (Downlink).

Interfaces:

- 2x4 ports SAMPA data
- 2x ports SAMPA Reset
- 2x3 ports SAMPA Trigger
- 2x3 ports SAMPA Clock

- 2x CML Tx
- CML Rx
- SPI (slow control)
- I2C

Environment

Standard mixed-mode design route

- Cadence CAD tools for start-tofinish design flow
- Top-to-bottom design
- TSMC DKs for the 65 nm process
- Powerful computer servers + client workstations
- Digital on top and mostly digital flow

Radiation tolerance aspects in design

- Digital part uses: 12T standard cell library of TSMC 65 nm process and triplication logic
- Analog part uses different known tips and tricks to provide radiation hardness by:
 - process
 - \circ design
 - schematics implementation
 (see proc. paper for details)

Specifications (1)

Specifications	Value	
Technology node	65 nm	
I/O voltage	2,5 V	
CORE voltage	1,2 V	
Temperature	0 - 85 °C	
Power consumption	< 1 W	
Radiation tolerance	< 100 Mrad	
Serial interface with SAMPA		
Number of input channels	8 channel (16 pins)	
Maximum input frequency	320 MHz	
Physical level	SLVS	

Specifications (2)

High speed Interface to counting room

Number of channels	Input	1		
	Outputs	2		
Frequency	2.56 GHz			
Physical level	CML			
Transmission distance	< 1 meter			
I2C Interface				
Operating mode	10 bit addressing			
Frequency	100 kHz	- 5 MHz		
Physical level	LVCMOS 1.2 V			
Synchronization Interface				
Number of channels	6 channel			
Frequencies	20/40/80/160/320 MHz			
Physical level	SLVS			

Specifications (3)

Output trigger links			
Number of links	6		
Physical level	SLVS		
Output reset links			
Number of links	2		
Physical level	SLVS		
Hardware address			
Number of links	4		
Physical level	LVCMOS 1.2 V		
External LDO control			
Number of links	2		
Physical level	LVCMOS 1.2 V		

The Conference "RFBR Grants for NICA", October 20-23, 2020

Prototype ASIC block diagram

Mixed-mode (mostly digital (~70%)) design

Building blocks

Analog blocks	Digital blocks	
SLVS Rx	IC receiver channel	I2C master
SLVS Tx	Phase Aligner	DES
CML_RX	Packet former	Reset
CML_TX	Digital Transmitter	Trigger
PLL	SER	Clock
CDR	Synhronization Logic	
POR	SPI Interface	
CMOS2CML	Command processor	

Getting data from SAMPA

High speed interface to counting room

Process & Pinout & Bonding

CPGA 120 TSMC 65nm CMOS Mixed-Signal/RF, Low **Power** Core : 1.2 V, IO : 2.5 V **Metal scheme:** 1P9M_6X1Z1U

THURSDAY

a well radiation qualified commercial process

EUROPRACTICE

Nearest plans

Further plans (2021)

- Design of breadboard (PCB) & measurement technique
- Lab functional tests of prototyped ASICs
- Study of ASIC radiation tolerance at PNPI, Gatchina

Conclusions

- Method for front-end (on-detector) data concentration has been developed
- Its implementation in radiation-tolerant CMOS ASIC, intended for the FEE cards of MPD TPC, is foreseen
- Prototype ASIC will be submitted for fabrication via Europractice soon (on Nov. 18)
- Lab functional tests of ASICs as well as their radiation tolerance tests are expected as next steps in 2021

Thank you for attention

The presented results have become possible due to RFBR support under Grant 18-02-40093

Back up slides

Format of commands for remote controller

• I2C write

CML protocol (1)

Main CML interface features:

- CML Rx receives command request
- CML Tx 0 translates command response and SAMPA data (if CML Tx 0 is free)
- CML Tx 1 translates SAMPA data if CML Tx 0 is busy
- CML data are encoded by 8b/10b

CML protocol (2) Synchronization procedure

CML modes:

- LOS (lost of sunc) K28.4
- SOS (start of sync) K28.1
- EOS (end of sync) K28.3
- WAIT K28.5
- Data packet
- Cmd packet

Steps:

- 1) ASIC starts of synchronization
- 2) Controller synchronize both channels
- 3) ASIC sends EOS
- 4) Controller finalize synchronization
- 5) ASIC finalize synchronization