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Outline of the talk

— Motivation: mechanism of confinement with machine learning?

— Overview of machine learning and artificial neural networks
(here and in other places in the text)

— Recognizing confinement from dynamics of topological objects?

Example: compact U(1) gauge theory in (2+1)d as a toy model
[M.N. Chernodub, Harold Erbin, V.A. Goy, and A.V. Molochkov, Phys. Rev. D 102, 054501]

— Guessing Getting physics from unphysics with neural networks:

Finding physical deconfinement temperature in lattice
Yang-Mills theories via a hint from outside the scaling

window.
[ D. Boyda, M. N. Chernodub, N. Gerasimenyuk,

V. Goy, S. Lyubimov, and A. Molochkoy, , arXiv:2009.10971 [hep-lat]]

— Future developments



Lattice QCD application to the finite density QGP study

Patterns study via NN?
Lattice QCD:

sign problem,

Taylor expansion,
Fugacity expansion,
analytic continuation

Analytic continuation
via neural network?

[from FAIR collaboration]

Nuclei Net Baryon Density

In the machine learning field of computer science, artificial neural networks can
successfully recognize and classify hidden patterns in (typically, huge) data sets.

NN feature: de-noising (technically) or renormalization (physically) large datasets



Many developments in the field
(ML + QFT + ...)
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Machine learning and artificial neural networks
Features:

— pattern recognition (without explicit programming)

— flexible (wide range of applications)

— very general (no theory is needed, black box problem)

— for some, possesses some ‘“creative” and “predictive” power

Applications, some of (General idea = pattern recognition):

— classification / clustering
— regression (prediction)

— transcription / translation
— anomaly detection

— de-noising

— synthesis and sampling

Applications in industry: computer vision, language processing, medical
diagnosis, fraud detection, recommendation system, autonomous driving, ...



Machine learning and artificial neural networks

Comparisons:

— results comparable and sometimes superior to human experts
(cancer diagnosis, traffic sign recognition. . .)

— generally, performance is much better compared to any other
machine algorithm

Drawbacks:

— black box
— magic
— nhumerical

(= how to extract analytical / exact results?)

For us, Machine Learning algorithms will upgrade the standard Monte Carlo



Deep neural network

Layered structure

(1) Input layer is the first layer of neurons which
receives data (bits that encode colored pixels
from an image, values of gauge fields in
an MC-generated SU(N) field configuration)

(2) Hidden layer is a layer of neurons that gets
information from the input layer, modifies it,
and passes to the output (or, next) layer.

Terminology: A neural network that contains more
than one hidden layer is a deep neural network.

Sometimes the answer is “42”.

for example, hidden layer(s) of neurons
a gluon (QCD)

configuration Hidden

0 = confinement
1 = deconfinement
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Activation function. Examples:

— Link: is a matrix operation which acts — RelU
on a vector from nth layer and gives an . . , G() = £0(8) = § £>0
input to the (n+1)th layer. The matrix linear (matrix) operation — |0, otherwise
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Deep neural network

Operations:

— convolution = Reduces matrix (database) size.
Takes a convolution (“selective blurring”) across an area.

— pooling = Reduces matrix (database) size.
Takes the maximum / average value across the pooled area.

— dropout = A form of regularization useful in training neural networks.
Removes a random selection of a fixed number of the units

Supervision:

— supervised network: teach network at a set of examples using
mean squared error as a validation (= examination)

— un-supervised network: leave network alone and let it classify
features of the system (of the database) itself.



Question: can we “learn confinement” in QCD?

— Big aim: Assuming that some (topological, semi-classical)
structures are responsible for confinement, can we find
(determine, describe) them in gluon configurations?

— Modest (intermediate) aim: first take a well-known toy model; make
test, tune the artificial network, and compare with (expected) results.



Compact U(1) gauge theory in (2+1)d

Similarities with SU(N) Yang-Mills theories:

- Mass gap generation

- Linear confinement

- Presence of instantons (instanton-like objects)
- Finite-temperature deconfinement



cU(1) gauge theory on the lattice
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cU(1) gauge theory on the lattice

— Finite-temperature deconfinement transition

0 T =1, T

Confinement 3 = j3, Deconfinement 15
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cU(1) gauge theory on the lattice

— Finite-temperature deconfinement transition seen by/via monopoles
0 1I'="1T. T
_——————————

Confinement B = (3, Deconfinement 15

A BKT-type transition in three Euclidean dimensions

Low temperature — High temperature

around transition




cU(1) gauge theory on the lattice

— Finite-temperature deconfinement transition seen by/via monopoles
0 1I'="1T. T
_——————————

Confinement B = (3, Deconfinement 15

A BKT-type transition in three Euclidean dimensions

H

Low temperature igh temperature

Can we recognize—___

the confining property?\




Machine learning monopoles and confinement

We should learn how to machine learn physical effects:

— vast diversity of different architectures
— choice of architecture depends on a specific problem (empirical)

Our objectives:

— train ANN at small lattice volumes (Lt,Ls) = (4,16)

— predict for larger lattices (Lt = 4,6,8, Ls = 16,32):
- the nature of the phase (confinement/deconfinement)
- values of Polyakov loop, |L]
- the critical temperature, 7.

Input:
— Lattice monopole configurations

Neural network:
— network: convolution + dense layers
— supervised learning technique
—1.28M parameters ... more than just fitting



Machine learning monopoles and confinement

Classifying the phases using the monopole configurations
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Machine learning monopoles and confinement

How fast does this ANN learn?

Training curve Learning curve
7 - —e— train 3.0 —e— train
-e- validation -®- validation
61 e progress with time & progress with volume
5 - “\ 2.0
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0 5 10 15Epoc2hos 25 30 35 Percentage of training data (n =64200)
Epoch = A full “training course" Uses the Adam optimization algorithm
using the full dataset (an extension to stochastic gradient descent)

training: about 2000 configurations
validation: 200 configurations



Machine learning monopoles and confinement

The neural network was trained at a small volume and asked to
make predictions at larger volumes (never seen configurations).

Predicting the value of the Polyakov loop and the phase
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Machine learning monopoles and confinement

Predicting the value of the Polyakov loop and the monopole density
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Machine learning monopoles and confinement

Summary. The artificial neural network (ANN):

—uses the supervised learning technique
to acquire knowledge about monopole configurations
generated by the standard Monte-Carlo technique

—processes the monopole configurations as 3d holograms

—studies how to associate these monopole holograms
with the vacuum expectation value of the Polyakov loop

—after training, uses the monopole configurations at larger-volume
lattices to distinguish confinement and deconfinement phases

—neglects the renormalization effects: while the predicted
Polyakov loop differs from the original order parameter,
the critical inflection points are close to each other.

—the best criterion for locating the phase transition: the degree of

the confusion experienced by the neural network.
the last point agrees with [1610.02048]



Learning physics from “unphysics”

Motivation: we know very-well a result at an unphysical
or not-so-interesting point, but we want to get
some information about a physical/interesting point.

Example: finite baryonic chemical potential in QCD

| <

>3
Lattice QCD £

2oo .

Interesting region

Analytic continuation

Lattice QCD: via neural network?

signh problem,
Taylor expansion,
analytic continuation

Temperature T [MeV]
3

Color Super
“ & Neutron \W§ condtore .
» . |[from FAIR collaboration]
4

Nuclei Net Baryon Density

Important feature: de-noising (technically) or renormalization (physically).
The neural network removes uninteresting UV fluctuations and leaves
only non-perturbative physics

— the Polyakov loop in compact electrodynamics

3 o



Learning physics from “unphysics”

Simplified example: lattice Yang-Mills at strong coupling
[D. Boyda, N. Gerasimenyuk, V. Goy, S. Lyubimoyv, A. Molochkov, M.C., to appear]

Input: We know the value of the order parameter at unphysical coupling(s)

- bad version No. 1: lattice Yang-Mills at very strong coupling,
no relation to the continuum limit

- bad version No. 2: lattice Yang-Mills at very weak coupling,
purely perturbative finite-volume physics

Output: We want to know the value of the order parameter for any value of
the coupling including the scaling region in lattice Yang-Mills theory

We take the bad choice No. 2:
SU(N¢) gauge theory on the lattice with p=4 (for Nc.=2) and =10 (for N.=3);

on the lattices with spatial extensions Ns=8,16,32

Our choices are really very bad: physical spatial lattice size is ~0.01 fm.

P.S. We also checked that a good ANN can treat the bad choice No. 1 very well as well.



Learning physics from “unphysics”

Architecture of the neural network

Layer Structure
InputLayer In | (Nt =4, NsXNs, Ns, DimxU)
putLay Out | (N = 4, NsxNs, Ny, DimxU)
In (47 NSXNsa NS? DlmXU)
Conv3D Out (2’ NsxNg, Ng, 256)
In (2, NSXNS7 NS7 256)
Conv3D Out (1, NSXNS, Ns; 32)
. In (1a NSXNS7 NS? 32)
AveragePooling3D Ouwt (1, 1, 1, 32)
In (17 17 17 32)
Flatten Out (32)
In (32)
Dense oy 0

Architecture of the neural network for the prediction of the

Polyakov Loop in the SU(N) gauge theory with the temporal

size of the lattice Nt = 4. Here Dim is dimension of theory,

U is dimension of vector representation

Input: raw configuration of SU(N) gauge field.

Hidden layers

Output: expectation value of the Polyakov loop

Train in the unphysical region:
known value of the Polyakov loop
for a set of SU(N) configurations at
unphysically small lattices ~(0.01 fm)3



Lattice configuration representation for ANN
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Learning physics from “unphysics”

—+»— Learning

. Validation (8 = 4) Learning curves for training and

validation at the point [} = 4 of the SU(2)

gauge theory on 163 x 4 lattice with the
mean squared error (MSE) used as a
loss function. The MSE normalized on

107% 5 the value of the order parameter

MSE

squared, (ILI)2, gives qualitatively the

same picture.
10—3 <

15 20 25

10
Epoch

The machine-learning algorithm finds a function of the lattice
configuration parameters that correlates with the Polyakov loop.



Learning physics from “unphysics”

Results:”

= = Critical coupling, B¢
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The neural network is able to find a “proper expression”
of the order parameter in the unphysical point. We restore it
in the whole parameter space, including the transition region.

") preliminary, to be beautified later
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Learning physics from “unphysics”

0.34 A
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L]
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—4— ML, g=25

10

20 30

Gauge step

40
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The degree of the gauge dependence
in the prediction of the order parameter
by the ML algorithm. The predicted order
parameter along with the prediction
uncertainty vs. the number of the gauge

randomization steps of the initial 163 x4
gluon configuration at f§ = 2.5.

The ML algorithm’s prediction is a gauge- invariant quantity that does not
depend on the strength of the gluonic configuration’s randomization in the

gauge group’s space transformations.



Learning physics from “unphysics”
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The Polyakov loop in SU(2) gauge theory at the Nt = 2.4 and Ns = 8, 16, 32 lattices. The Monte-Carlo (MC)

simulation, shown by the blue line, and the prediction of the machine-learning (ML) algorithm, shown by the
orange line, overlap within the error bars. We use 100 configurations for all three lattice sizes.



Learning physics from “unphysics”
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Polyakov loop for SU(3) gauge theory at Nt = 2,4 obtained with the Monte Carlo simulations

compared to the neural network prediction. The absolute value, the real and imaginary parts of the
loop are shown. The value of ML ILI restored from ML predictions of IRe[L]l and [Im[L]I.



Machine learning confinement

Summary again:

—the neural network uses the supervised learning technique
to make reasonable predictions about the phase diagram;

—the neural network may learn essential properties of the
lattice field theory: group symmetry, gauge invariance etc.;

— the machine-learning algorithm allows us to restore a
gauge-invariant order parameter in the whole physical region
of the parameter space after being trained on lattice
configurations at one unphysical point in the lattice parameter

space;

—the neural network may serve as an efficient numerical
counterpart of an "analytical continuation' of physical observable.
as a function of lattice configuration.



Future developments (very briefly)

Use artificial neural network,
together with Monte Carlo to find

— gluonic field configurations responsible
for color confinement in Yang-Mills theory.

— QCD endpoint at real baryonic chemical potential.



