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Outline of the talk

— Recognizing confinement from dynamics of topological objects?

— Overview of machine learning and artificial neural networks

— Motivation: mechanism of confinement with machine learning?

— Guessing Getting physics from unphysics with neural networks:  

(here and in other places in the text)

Example: compact U(1) gauge theory in (2+1)d as a toy model

Finding physical deconfinement temperature in lattice 
Yang-Mills theories via a hint from outside the scaling 
window.

—Future developments

[M. N. Chernodub, Harold Erbin, V. A. Goy, and A. V. Molochkov, Phys. Rev. D 102, 054501]

[ D. Boyda, M. N. Chernodub, N. Gerasimenyuk,  
V. Goy, S. Lyubimov, and A. Molochkov, , arXiv:2009.10971 [hep-lat]]



Lattice QCD application to the finite density QGP study

[from FAIR collaboration]

Lattice QCD: 
sign problem, 
Taylor expansion, 
Fugacity expansion, 
analytic continuation

Interesting region

Patterns study via NN? 

Analytic continuation 
via neural network?

Lattice QCD

In the machine learning field of computer science, artificial neural networks can 
successfully recognize and classify hidden patterns in (typically, huge) data sets.

 NN feature: de-noising (technically) or renormalization (physically) large datasets 



Many developments in the field  
(ML + QFT + …)

… + 
1605.01735, Carrasquilla-Melko;  
1608.07848, Broecker et al.;  
1703.02435, Wetzel;  
1705.05582, Wetzel-Scherzer;  
1805.11058, Abe et al.;  
1801.05784, Shanahan-Trewartha-Detmold;  
1807.05971, Yoon-Bhattacharya-Gupta;  
1810.12879, Zhou-Endrõdi-Pang;  
1811.03533, Urban-Pawlowski;  
1904.12072, Albergo-Kanwar-Shanahan;  
1908.00281 Fukushima-Funai-Iida; 
1909.06238, Matsumoto-Kitazawa-Kohno;  
2004.14341 Bachtis-Aarts-Lucini 
+ …



Machine learning and artificial neural networks
Features:

— pattern recognition (without explicit programming)  

— flexible (wide range of applications)

— very general (no theory is needed, black box problem)

— for some, possesses some “creative” and “predictive” power

Applications, some of (General idea = pattern recognition):
—︎ classification / clustering 
︎ 
— regression (prediction) 
︎ 
— transcription / translation 
︎ 
— anomaly detection 
︎ 
— de-noising 
︎— synthesis and sampling

Applications in industry: computer vision, language processing, medical  
diagnosis, fraud detection, recommendation system, autonomous driving, …



Machine learning and artificial neural networks
Comparisons:

Drawbacks:

— results comparable and sometimes superior to human experts  
    (cancer diagnosis, traffic sign recognition. . . ) 

— generally, performance is much better compared to any other  
    machine algorithm

— black box 

— magic 

— numerical 

(= how to extract analytical / exact results?)

For us, Machine Learning algorithms will upgrade the standard Monte Carlo



Deep neural network
Layered structure
(1) Input layer is the first layer of neurons which  
     receives data (bits that encode colored pixels  
     from an image, values of gauge fields in  
     an MC-generated SU(N) field configuration)

(2) Hidden layer is a layer of neurons that gets 
      information from the input layer, modifies it, 
      and passes to the output (or, next) layer.

Terminology: A neural network that contains more  
than one hidden layer is a deep neural network.

(3) The final layer of a neural network which   
     contains the answer(s).

Sometimes the answer is “42”.

→ Link: is a matrix operation which acts  
    on a vector from nth layer and gives an  
    input to the (n+1)th layer. The matrix  
    elements are weights to be tuned.

for example,  
a gluon (QCD) 
configuration

hidden layer(s) of neurons

linear (matrix) operation

neuron

(out) (in)

(in)(out)

Activation function. Examples:
— ReLU

— Sigmoid

For example:



Operations:

Deep neural network

— convolution  = Reduces matrix (database) size.  
                                     Takes a convolution (“selective blurring”) across an area.

— pooling   = Reduces matrix (database) size.  
                              Takes the maximum / average value across the pooled area.

— dropout   =  A form of regularization useful in training neural networks. 
                                Removes a random selection of a fixed number of the units

Supervision:

— supervised network: teach network at a set of examples using  
    mean squared error as a validation (= examination)

— un-supervised network: leave network alone and let it classify 
     features of the system (of the database) itself.



Question: can we “learn confinement” in QCD? 

— Big aim: Assuming that some (topological, semi-classical)  
     structures are responsible for confinement, can we find  
     (determine, describe) them in gluon configurations? 

— Modest (intermediate) aim: first take a well-known toy model; make  
    test, tune the artificial network, and compare with (expected) results.



Compact U(1) gauge theory in (2+1)d

Similarities with SU(N) Yang-Mills theories: 

- Mass gap generation
- Linear confinement

- Finite–temperature deconfinement
- Presence of instantons (instanton-like objects)



cU(1) gauge theory on the lattice
— Lattice action

(1) (2) (3) (4)

(1)
(2)

(3)
(4)

— Plaquette angle

— Compactness

— Density of abelian monopoles

Monopoles are defined on the cubes of the lattice

gauge coupling



cU(1) gauge theory on the lattice
— Finite-temperature deconfinement transition

Confinement Deconfinement

(time)

(space)

lattice coupling

temperature

lattice size

lattice spacing
temperature

continuum            lattice



cU(1) gauge theory on the lattice
— Finite-temperature deconfinement transition seen by/via monopoles

Confinement Deconfinement

Dense gas of  
monopoles and anti-monopoles

       Dilute gas of  
magnetic dipoles

A BKT-type transition in three Euclidean dimensions

around transition

High temperatureLow temperature

(surely) (surely)

(????)



cU(1) gauge theory on the lattice
— Finite-temperature deconfinement transition seen by/via monopoles

Confinement Deconfinement

Dense gas of  
monopoles and anti-monopoles

       Dilute gas of  
magnetic dipoles

A BKT-type transition in three Euclidean dimensions
High temperatureLow temperature

(surely) (surely)

Can we recognize 
the confining property?



Machine learning monopoles and confinement
We should learn how to machine learn physical effects:
— vast diversity of different architectures
— choice of architecture depends on a specific problem (empirical)

Our objectives: 
— train ANN at small lattice volumes (Lt,Ls) = (4,16) 
— predict for larger lattices (Lt = 4,6,8, Ls = 16,32): 
          - the nature of the phase (confinement/deconfinement) 
          - values of Polyakov loop, |L|  
          - the critical temperature, Tc

Input: 
— Lattice monopole configurations 

Neural network: 
— network: convolution + dense layers 
— supervised learning technique   
—1.28M parameters … more than just fitting



Machine learning monopoles and confinement
Classifying the phases using the monopole configurations



How fast does this ANN learn?

Machine learning monopoles and confinement

Training curve Learning curve

Epoch = A full “training course"  
            using the full dataset

progress with time progress with volume

training: about 2000 configurations 
validation: 200 configurations

Uses the Adam optimization algorithm 

(an extension to stochastic gradient descent)



The neural network was trained at a small volume and asked to 
make predictions at larger volumes (never seen configurations).

Machine learning monopoles and confinement

confined
deconfined

Monte Carlo 
(original)

Artificial 
Neural 
Network 
(predicted)

Predicting the value of the Polyakov loop and the phase 



Machine learning monopoles and confinement
Predicting the value of the Polyakov loop and the monopole density

Predicting  
the critical 
temperature

Locating the phase  
transition by the  
degree of the confusion 
experienced by the  
neural network



Summary. The artificial neural network (ANN): 
Machine learning monopoles and confinement

—uses the supervised learning technique  
   to acquire knowledge about monopole configurations 
   generated by the standard Monte-Carlo technique  

—processes the monopole configurations as 3d holograms 

—studies how to associate these monopole holograms  
    with the vacuum expectation value of the Polyakov loop  

—after training, uses the monopole configurations at larger-volume  
   lattices to distinguish confinement and deconfinement phases 

—the best criterion for locating the phase transition: the degree of  
   the confusion experienced by the neural network. 

—neglects the renormalization effects: while the predicted 
   Polyakov loop differs from the original order parameter, 
   the critical inflection points are close to each other. 

the last point agrees with [1610.02048]



Motivation: we know very-well a result at an unphysical 
               or not-so-interesting point, but we want to get 
               some information about a physical/interesting point.

Learning physics from “unphysics”

Important feature: de-noising (technically) or renormalization (physically).  
The neural network removes uninteresting UV fluctuations and leaves  
only non-perturbative physics 
→ the Polyakov loop in compact electrodynamics 

Example: finite baryonic chemical potential in QCD

[from FAIR collaboration]

Lattice QCD: 
sign problem, 
Taylor expansion, 
analytic continuation

Interesting region

Analytic continuation 
via neural network?

Lattice QCD



Simplified example: lattice Yang-Mills at strong coupling

Learning physics from “unphysics”

Input: We know the value of the order parameter at unphysical coupling(s) 
             
            - bad version No. 1: lattice Yang-Mills at very strong coupling,  
                                              no relation to the continuum limit 
             
            - bad version No. 2: lattice Yang-Mills at very weak coupling,  
                                              purely perturbative finite-volume physics

Output: We want to know the value of the order parameter for any value of 
             the coupling including the scaling region in lattice Yang-Mills theory

[D. Boyda, N. Gerasimenyuk, V. Goy, S. Lyubimov, A. Molochkov, M.C., to appear]

We take the bad choice No. 2:  
  SU(Nc) gauge theory on the lattice with 𝛽=4 (for Nc=2) and 𝛽=10 (for Nc=3); 
  on the lattices with spatial extensions Ns=8,16,32

Our choices are really very bad: physical spatial lattice size is ~0.01 fm.
P.S.  We also checked that a good ANN can treat the bad choice No. 1 very well as well.



Learning physics from “unphysics”
Architecture of the neural network

Input: raw configuration of SU(N) gauge field. 

Train in the unphysical region:  
           known value of the Polyakov loop 
           for a set of SU(N) configurations at  
           unphysically small lattices ~(0.01 fm)3

Output: expectation value of the Polyakov loop

Hidden layers

6

As the result, the neural network that trained on the
value of the � = 4 deep in the deconfinement region
reproduces the Polyakov loop with a perfect agreement
with Monte-Carlo data at all other values of the lattice
coupling constant including the region of the true decon-
finement transition. For the smallest spatial extension,
Nt = 2, the results are shown in Fig. 1.

The perfect (modulo statistical errors) overlap between
the predicted and the original data indicates that the
critical value of the coupling constant �c is recovered by
the machine-learning algorithm very well. The errors in
Fig. 1 correspond to the statistical uncertainties inherent
to the original Monte Carlo configurations of the gluon
fields. At the smallest lattice volume (Ns = 8), the statis-
tical errors are naturally larger. We use the same number
(100) configurations for all three lattice sizes.

We repeat the same analysis for the lattices with
Nt = 4 in which the critical coupling constant lies in the
scaling region of the theory. In this case, to find input
data correlations that correspond to the Polyakov Loop,
the neural network needs to analyze longer pathways in
the gauge groups in order to be able to cover at least one
winding of the path along the time direction. Thus, in-
creasing the Nt value requires an additional convolution
layer. A combination of two convolution layers allows
the machine-learning algorithm to find correlations along
four time-links on the lattice. The space of the correlated
parameters increases as well. Thus, the dense layer has
to contain more neurons to learn the correlations. In the
case of Nt = 4, the dense layer is built of 32 neurons (see
Table II).

Layer Structure

InputLayer
In (Nt = 4, Ns⇥Ns, Ns, Dim⇥U)
Out (Nt = 4, Ns⇥Ns, Ns, Dim⇥U)

Conv3D
In (4, Ns⇥Ns, Ns, Dim⇥U)
Out (2, Ns⇥Ns, Ns, 256)

Conv3D
In (2, Ns⇥Ns, Ns, 256)
Out (1, Ns⇥Ns, Ns, 32)

AveragePooling3D
In (1, Ns⇥Ns, Ns, 32)
Out (1, 1, 1, 32)

Flatten
In (1, 1, 1, 32)
Out (32)

Dense
In (32)
Out (1)

TABLE II. The same as in Table II but for Nt = 4.

The learning and validation curves for Nt = 4 lattice
are shown in Fig. 2. These are representative examples,
qualitatively valid for all studied systems with Nt = 2, 4
temporal extensions, Ns = 8, 16, 32 spatial sizes, and
both SU(2) and SU(3) gauge groups. The learning rate
lies in the range [0.001, 0.002] depending on lattice size

and theory. The training with the subsequent validation
has been done at the perturbatively deconfining point
with � = 4. Both learning and validation curves of Fig. 2
show the absence of under- and over-fitting as both curves
gradually approach a common plateau at the end of the
learning process.

The result of the neural network analysis of the
Nt = 4 lattice is presented in Fig. 1. One can
clearly see that machine-learning algorithm reproduces
the Polyakov loop with a perfect agreement with Monte-
Carlo data.

Our results point to the neural network’s ability to find
a physically meaningful correlation between the input pa-
rameters that correspond to the trace of the SU(2) matri-
ces product along the time direction. The lattice config-
urations of the gluon fields generated by the Monte Carlo
procedure contain noisy background related to the ultra-
violet fluctuations of the gluon fields and random trans-
formations of the SU(2) gauge-symmetry group. The
noise “hides” the signal of any observables that are not
prone to withstand these fluctuations. The ultraviolet
fluctuations a↵ect any local observable, while the ran-
dom gauge transformations hide any non-gauge-invariant
quantity in the random noise.

We also check the vulnerability of the ML algorithm for
the gauge noise that could theoretically a↵ect the accu-
racy in the prediction of the Polyakov loop. To this end,
we take 100 gluon configurations at the coupling � = 2.5
for the representative lattice size 163⇥ 4. We then apply
several random gauge transformation to each gluon con-
figuration and subsequently initiate the machine learning
algorithm to predict the Polyakov loop using the gauge-
randomized gluons as an input. The result, presented in
Fig. 4, shows that the ML algorithm’s forecast is a gauge-
invariant quantity that does not depend on the strength
of the gluonic configuration’s randomization in the gauge
group’s space transformations.

Thus, the neural network selects a non-local and gauge-
invariant observable to characterize the phase. This sim-
ple observation explains the impressive ability of the
machine-learning algorithm to find correlations in the
data that correspond to the Polyakov Loop during the
learning phase, and subsequently find its values in the
full range of the coupling � during the prediction phase.

A correlation between the decision function of the
machine-learning algorithm and the Polyakov Loop was
pointed out in Ref. [7]. The correlation was found after
the phase classification for the SU(2) theory by polyno-
mial fit of the neural network prediction function. We
used a neural network with a 3D convolution layer (I) to
analyse the SU(2) group parameters (12) as independent
quantities. Our approach allows us to build and train
the neural network that can find the order parameter far
outside the range of the lattice coupling values used for
the training. As a result, the neural network recovers
the order parameter at all physically interesting values
of coupling.

Architecture of the neural network for the prediction of the 
Polyakov Loop in the SU(N) gauge theory with the temporal 
size of the lattice Nt = 4. Here Dim is dimension of theory, 
U is dimension of vector representation 
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the information coming from the MC configurations are
enough for the ML algorithm to learn about the order pa-
rameter and make accurate predictions in the physically
relevant scaling window of the lattice Yang-Mills theory.

IV. RESTORATION OF THE ORDER
PARAMETER WITH NEURAL NETWORKS

In this section, we discuss application of the ML meth-
ods to predict an order parameter of the theory with lat-
tice configurations as an input. The study focuses on
building of an neural network that can predict observ-
ables of the SU(2) and SU(3) theories.

A. SU(2) gauge theory

To build a machine-learning algorithm that can ana-
lyze lattice data of non-Abelian theory, we need to con-
struct a multidimensional dataset from a lattice configu-
ration that is a matrices dataset. To this end, we use the
following vector representation for the SU(2) matrices:

U=

✓
u11 u12

u21 u22

◆
⌘
✓

a1 + ia2 a3 + ia4
�a3 + ia4 a1 � ia2

◆
!

0

B@

a1
a2
a3
a4

1

CA , (12)

where a1 = Re(u11), a2 = Im(u11), a3 = Re(u12), and
a4 = Im(u12).

After the matrix dimension’s flattening, an array with
shape [Nt, Ns, Ns, Ns, Dim, 4] represents the lattice con-
figuration. The last dimension corresponds to the matrix
element numbering discussed above, and Dim is the di-
rection µ of the matrix Uµ(x) at every lattice site [Nt,
Ns, Ns, Ns]. We use 3D convolutional layers and reshape
lattice configuration as a 4D array (3 dimensions for spa-
tial coordinates and one for channels) due to technical
reasons. Since we build a neural network that searches
correlations between any two matrices Uµ(x) and U⌫(y)
at the points x and y closed to each other, we merge the
last two dimensions of the array. Other two dimensions
could be also merged by cost of locality - array M [y][x]
can be presented as an array M [y ⇤Ny + x] .

The resulting lattice data array has a dimension of
4. The first dimension corresponds to the numbering of
temporal layers of the lattice. The second dimension de-
scribed by single flattened array of two spatial axis, third
dimension of array corresponds to the last axis of the spa-
tial direction, and the last dimension corresponds to the
numbering of the matrix elements (12) for all lattice di-
rections µ.

For the lattices with Nt = 2, the neural network con-
sists of one three-dimensional convolutional layer with 16
filters and the kernel size 2⇥ 1⇥ 1 with Relu activation
function, and a final dense layer with a linear activa-
tion function with 16 neurons. The averaging layer over
the entire volume and the flattening layer separate the

convolutional and dense layers. The architecture for the
temporal lattice extension Nt = 2 is shown in Table I.

Layer Structure

InputLayer
In (Nt = 2, Ns⇥Ns, Ns, Dim⇥U)
Out (Nt = 2, Ns⇥Ns, Ns, Dim⇥U)

Conv3D
In (2, Ns⇥Ns, Ns, Dim⇥U)
Out (1, Ns⇥Ns, Ns, 16)

AveragePooling3D
In (1, Ns⇥Ns, Ns, 16)
Out (1, 1, 1, 16)

Flatten
In (1, 1, 1, 16)
Out (16)

Dense
In (16)
Out (1)

TABLE I. Architecture of the neural network for the predic-
tion of the Polyakov Loop in the SU(N) gauge theory with the
temporal size of the lattice Nt = 2. Here Dim is dimension of
theory, U is dimension of vector representation

.

It is important to stress that the convolution kernels
shape defines the physical observable that the neural net-
work can extract from the lattice data. For example, the
kernel size equal to Nt ⇥ 1 ⇥ 1 leads to the neural net-
work output with a function of Nt Uµ(x) matrices located
along the closed line in Nt direction that corresponds to
the Polyakov loop.
We generate 9000 lattice configurations at the one

value (� = 4) of the lattice coupling for lattices with
the spatial sizes Ns = 8, 16, 32 and the temporal sizes
Nt = 2, 4. We also generate 100 configurations for a
number of points at lower values of the coupling �, that
the neural network does not use for training but rather
for prediction.
Although a study of confinement-deconfinement phase

transition does not require configurations from all possi-
ble vacuum sectors, we found it essential to have high-
quality data generated from di↵erent vacuum sectors to
train a neural network.
We train the neural network on the lattice configura-

tions generated in the (volume-induced) deconfinement
phase at the point � = 4 for SU(2) that is far from the
phase transition point. The neural network is trained to
predict correctly the value of the Polyakov loop that is al-
ready known from the Monte Carlo simulations. We use
the mean squared error (MSE) as a loss function and the
Adam algorithm as the neural network parameters’ opti-
mization method. The training is done in batches of size
10 - 50 configurations for SU(3) and 10 - 50 for SU(2).
The training is halted when the loss function reached a
plateau so that the neural network gained the maximal
possible – for the given architecture – knowledge how to
reconstruct the order parameter from the lattice config-
urations.

Lattice configuration representation for ANN

SU(2):

Nonperturbative Casimir Effects in Lattice Gauge Theories

Conclusion

Conclusions:

The Casimir effect leads to vacuum restructuring of a finite
system:

◮ Low-temperature deconfinement via modification of quantum
fluctuations in a confining field theory.

◮ Emergence of a new scale, the Casimir mass, which is
unexpectedly three times lighter than the mass of the lowest
glueball. As the chromometallic wires become more opaque,
the Casimir mass increases, presumably towards the lowest
glueball mass.

{Uµ(t, x , y , z)} → [Nt ,Ns ,Ns ,Ns ,Dim, 4]

Nonperturbative Casimir Effects in Lattice Gauge Theories

Conclusion

{Uµ(t, x , y , z)} → [Nt ,Ns ,Ns ,Ns ,Dim, 4]

U=

$

%
u11 u12 u13
u21 u22 u23
u31 u32 u33

&

'≡

$

%
a1 + ia2 a3 + ia4 a5 + ia6
a7 + ia8 a9 + ia10 a11 + ia12
a13 + ia14 a15 + ia16 a17 + ia18

&

'→

$

((((%

a1
a2
a3
:

a18

&

))))'
, (8)

SU(3):

Nonperturbative Casimir Effects in Lattice Gauge Theories

Conclusion

{Uµ(t, x , y , z)} → [Nt ,Ns ,Ns ,Ns ,Dim, 4]

U=

$

%
u11 u12 u13
u21 u22 u23
u31 u32 u33

&

'≡

$

%
a1 + ia2 a3 + ia4 a5 + ia6
a7 + ia8 a9 + ia10 a11 + ia12
a13 + ia14 a15 + ia16 a17 + ia18

&

'→

$

((((%

a1
a2
a3
:

a18

&

))))'
, (8)

{Uµ(t, x , y , z)} → [Nt ,Ns ,Ns ,Ns ,Dim, 18]

Nonperturbative Casimir Effects in Lattice Gauge Theories

Conclusion

{Uµ(t, x , y , z)} → [Nt ,Ns ,Ns ,Ns ,Dim, 4]

U=

$

%
u11 u12 u13
u21 u22 u23
u31 u32 u33

&

'≡

$

%
a1 + ia2 a3 + ia4 a5 + ia6
a7 + ia8 a9 + ia10 a11 + ia12
a13 + ia14 a15 + ia16 a17 + ia18

&

'→

$

((((%

a1
a2
a3
:

a18

&

))))'
, (8)

{Uµ(t, x , y , z)} → [Nt ,Ns ,Ns ,Ns ,Dim, 18]

[Nt ,Ns ,Ns ,Ns ,Dim, 18] → [Nt ,Ns × Ns ,Ns ,Dim × U]

Dimension of the set reduction: 
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FIG. 1. The Polyakov loop in SU(2) gauge theory at the Nt = 2 and Ns = 8, 16, 32 lattices. The Monte-Carlo (MC) simulation,
shown by the blue line, and the prediction of the machine-learning (ML) algorithm, shown by the orange line, overlap within the
error bars. The vertical dashed line shows the critical value of � obtained with the fits (11) of the Polyakov loop susceptibility (9).
We use 100 configurations for all three lattice sizes.

0 5 10 15 20 25

Epoch

10�3

10�2

10�1

M
S
E
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Validation (� = 4)

FIG. 2. Learning curves for training and validation at the
point � = 4 of the SU(2) gauge theory on 163 ⇥ 4 lattice with
the mean squared error (MSE) used as a loss function. The
MSE normalized on the value of the order parameter squared,
h|L|i2, gives qualitatively the same picture.

B. SU(3) gauge theory

In this section we repeat the procedure of the pre-
diction/restoration of the order parameter for the SU(3)
configurations. We employ the same architecture of the
neural network that has already been used for the SU(2)
lattice gauge theory. Contrary to the SU(2) case, we use
the full set of 9 complex numbers in the SU(3) case.

In the case of the SU(3) group, the Polyakov loop is a
complex number. Therefore, we have to train and predict
its value independently both for real and imaginary part
of the Polyakov loop. As a training point, we use the
lattice coupling � = 10 that corresponds to artificially
small lattices which feature the perturbative deconfine-
ment. Similarly to the SU(2) case, we generate 9000
lattice field configurations for the training of the neural
network and use only 100 configurations for the predic-
tion. The error bars in the figures reflect the level of
statistical fluctuations of the original Monte Carlo con-

figurations.
Repeating the same procedures as we done in the case

of SU(2) Yang Mills theory, we obtain the Polyakov loop
in a perfect agreement with Monte Carlo simulations of
the SU(3) gauge theory. The neural network is able to
find the correlations in the lattice data at one (unphys-
ical) point of the lattice coupling and restore the be-
haviour of this order parameter in the full range of the
lattice couplings including the interesting region of the
real physical phase transition.

V. CONCLUSION

In our paper, we demonstrated that the neural net-
work may serve as an e�cient numerical counterpart of
an “analytical continuation” of physical observable as a
function of lattice configuration. The machine-learning
algorithm allows us to restore a gauge-invariant order
parameter in the whole physical region of the parameter
space after being trained on lattice configurations at one
unphysical point in the lattice parameter space.
We have chosen the training point far away from the

physical region at a very weak coupling. This partic-
ular choice was deliberately made in the most-possible
unphysical way: the training point cannot serve, neither
in numerical approaches not in analytical techniques, for
any meaningful analysis of the phase structure of the the-
ory because the system experiences a finite-volume de-
confinement transition. Therefore, the model resides in
the perturbative regime and has no relation to the con-
tinuum non-perturbative Yang-Mills theory.
After the training phase, the neural network was aimed

to predict the Polyakov loop as the deconfining order pa-
rameter in the SU(2) and SU(3) gauge theories. The
machine learning algorithm was able to build a trace of
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Learning curves for training and 
validation at the point β = 4 of the SU(2) 
gauge theory on 163 × 4 lattice with the 
mean squared error (MSE) used as a 
loss function. The MSE normalized on 
the value of the order parameter 
squared, ⟨|L|⟩2, gives qualitatively the 
same picture. 

The machine-learning algorithm finds a function of the lattice 
configuration parameters that correlates with the Polyakov loop.
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in the whole parameter space, including the transition region.
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0 10 20 30 40 50

Gauge step

0.29

0.30

0.31

0.32

0.33

0.34

0.35

|L
|

ML, � = 2.5
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of the order parameter by the ML algorithm. The predicted
order parameter along with the prediction uncertainty vs. the
number of the gauge randomization steps of the initial 163⇥4
gluon configuration at � = 2.5.

region of the � values with a good precision. We thus
demonstrated that the machine learning techniques may
be used as an analytical-type continuation from easily
reachable but physically uninteresting regions of the cou-
pling space to the interesting but potentially not acces-
sible regions. This approach may prove to be particu-
larly useful in models, where simulations in a physical
region cannot be done to due numerical (computational)
constraints provided the unphysical (extreme) points are
still available for training.
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FIG. 1. The Polyakov loop in SU(2) gauge theory at the Nt = 2 and Ns = 8, 16, 32 lattices. The Monte-Carlo (MC) simulation,
shown by the blue line, and the prediction of the machine-learning (ML) algorithm, shown by the orange line, overlap within the
error bars. The vertical dashed line shows the critical value of � obtained with the fits (11) of the Polyakov loop susceptibility (9).
We use 100 configurations for all three lattice sizes.
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FIG. 2. Learning curves for training and validation at the
point � = 4 of the SU(2) gauge theory on 163 ⇥ 4 lattice with
the mean squared error (MSE) used as a loss function. The
MSE normalized on the value of the order parameter squared,
h|L|i2, gives qualitatively the same picture.

B. SU(3) gauge theory

In this section we repeat the procedure of the pre-
diction/restoration of the order parameter for the SU(3)
configurations. We employ the same architecture of the
neural network that has already been used for the SU(2)
lattice gauge theory. Contrary to the SU(2) case, we use
the full set of 9 complex numbers in the SU(3) case.

In the case of the SU(3) group, the Polyakov loop is a
complex number. Therefore, we have to train and predict
its value independently both for real and imaginary part
of the Polyakov loop. As a training point, we use the
lattice coupling � = 10 that corresponds to artificially
small lattices which feature the perturbative deconfine-
ment. Similarly to the SU(2) case, we generate 9000
lattice field configurations for the training of the neural
network and use only 100 configurations for the predic-
tion. The error bars in the figures reflect the level of
statistical fluctuations of the original Monte Carlo con-

figurations.
Repeating the same procedures as we done in the case

of SU(2) Yang Mills theory, we obtain the Polyakov loop
in a perfect agreement with Monte Carlo simulations of
the SU(3) gauge theory. The neural network is able to
find the correlations in the lattice data at one (unphys-
ical) point of the lattice coupling and restore the be-
haviour of this order parameter in the full range of the
lattice couplings including the interesting region of the
real physical phase transition.

V. CONCLUSION

In our paper, we demonstrated that the neural net-
work may serve as an e�cient numerical counterpart of
an “analytical continuation” of physical observable as a
function of lattice configuration. The machine-learning
algorithm allows us to restore a gauge-invariant order
parameter in the whole physical region of the parameter
space after being trained on lattice configurations at one
unphysical point in the lattice parameter space.
We have chosen the training point far away from the

physical region at a very weak coupling. This partic-
ular choice was deliberately made in the most-possible
unphysical way: the training point cannot serve, neither
in numerical approaches not in analytical techniques, for
any meaningful analysis of the phase structure of the the-
ory because the system experiences a finite-volume de-
confinement transition. Therefore, the model resides in
the perturbative regime and has no relation to the con-
tinuum non-perturbative Yang-Mills theory.
After the training phase, the neural network was aimed

to predict the Polyakov loop as the deconfining order pa-
rameter in the SU(2) and SU(3) gauge theories. The
machine learning algorithm was able to build a trace of
the gauge group matrices product along a closed loop
in the time direction. As a result, the neural network
trained at one (unphysical) value of the lattice coupling
� was able to predict the order parameter in the whole
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the perturbative regime and has no relation to the con-
tinuum non-perturbative Yang-Mills theory.
After the training phase, the neural network was aimed

to predict the Polyakov loop as the deconfining order pa-
rameter in the SU(2) and SU(3) gauge theories. The
machine learning algorithm was able to build a trace of
the gauge group matrices product along a closed loop
in the time direction. As a result, the neural network
trained at one (unphysical) value of the lattice coupling
� was able to predict the order parameter in the whole

7

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

�

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

|L
| SU(2)

83 ⇥ 2

Critical coupling, �c

ML (�train = 4)

MC

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

�

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

|L
| SU(2)

163 ⇥ 2

Critical coupling, �c

ML (�train = 4)

MC

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

�

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

|L
| SU(2)

323 ⇥ 2

Critical coupling, �c

ML (�train = 4)

MC

FIG. 1. The Polyakov loop in SU(2) gauge theory at the Nt = 2 and Ns = 8, 16, 32 lattices. The Monte-Carlo (MC) simulation,
shown by the blue line, and the prediction of the machine-learning (ML) algorithm, shown by the orange line, overlap within the
error bars. The vertical dashed line shows the critical value of � obtained with the fits (11) of the Polyakov loop susceptibility (9).
We use 100 configurations for all three lattice sizes.

0 5 10 15 20 25

Epoch

10�3

10�2

10�1

M
S
E

Learning

Validation (� = 4)

FIG. 2. Learning curves for training and validation at the
point � = 4 of the SU(2) gauge theory on 163 ⇥ 4 lattice with
the mean squared error (MSE) used as a loss function. The
MSE normalized on the value of the order parameter squared,
h|L|i2, gives qualitatively the same picture.

B. SU(3) gauge theory

In this section we repeat the procedure of the pre-
diction/restoration of the order parameter for the SU(3)
configurations. We employ the same architecture of the
neural network that has already been used for the SU(2)
lattice gauge theory. Contrary to the SU(2) case, we use
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its value independently both for real and imaginary part
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FIG. 3. The results for the Polyakov loop for SU(2) gauge theory at Nt = 4 coming from the Monte Carlo (MC) simulations
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FIG. 4. The degree of the gauge dependence in the prediction
of the order parameter by the ML algorithm. The predicted
order parameter along with the prediction uncertainty vs. the
number of the gauge randomization steps of the initial 163⇥4
gluon configuration at � = 2.5.

region of the � values with a good precision. We thus
demonstrated that the machine learning techniques may
be used as an analytical-type continuation from easily
reachable but physically uninteresting regions of the cou-
pling space to the interesting but potentially not acces-
sible regions. This approach may prove to be particu-
larly useful in models, where simulations in a physical
region cannot be done to due numerical (computational)
constraints provided the unphysical (extreme) points are
still available for training.
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region of the � values with a good precision. We thus
demonstrated that the machine learning techniques may
be used as an analytical-type continuation from easily
reachable but physically uninteresting regions of the cou-
pling space to the interesting but potentially not acces-
sible regions. This approach may prove to be particu-
larly useful in models, where simulations in a physical
region cannot be done to due numerical (computational)
constraints provided the unphysical (extreme) points are
still available for training.
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gluon configuration at � = 2.5.

region of the � values with a good precision. We thus
demonstrated that the machine learning techniques may
be used as an analytical-type continuation from easily
reachable but physically uninteresting regions of the cou-
pling space to the interesting but potentially not acces-
sible regions. This approach may prove to be particu-
larly useful in models, where simulations in a physical
region cannot be done to due numerical (computational)
constraints provided the unphysical (extreme) points are
still available for training.
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[23] S. Blücher, L. Kades, J. M. Pawlowski, N. Strodtho↵
and J. M. Urban, “Towards novel insights in lattice field
theory with explainable machine learning,” Phys. Rev. D
101, no.9, 094507 (2020).

[24] J. Fingberg, U. M. Heller and F. Karsch, “Scaling and
asymptotic scaling in the SU(2) gauge theory,” Nucl.
Phys. B 392, 493-517 (1993).

[25] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Lege-
land, M. Lutgemeier and B. Petersson, “Thermodynam-
ics of SU(3) lattice gauge theory,” Nucl. Phys. B 469,
419-444 (1996).

[26] K. Binder, “Finite size scaling analysis of Ising model
block distribution functions,” Z. Phys. B 43, 119 (1981).

[27] P. Broecker, J. Carrasquilla, R. G. Melko, S. Trebst,
“Machine learning quantum phases of matter beyond the
fermion sign problem,” Sci. Rep. 7, 8823 (2017).

Polyakov loop for SU(3) gauge theory at Nt = 2,4 obtained with the Monte Carlo simulations 
compared to the neural network prediction. The absolute value, the real and imaginary parts of the 
loop are shown. The value of ML |L| restored from ML predictions of |Re[L]| and |Im[L]|. 

Learning physics from “unphysics”



Summary again:
Machine learning confinement

—the neural network uses the supervised learning technique  
   to make reasonable predictions about the phase diagram; 

—the neural network may serve as an efficient numerical 
counterpart of an ``analytical continuation'' of physical observable. 
as a function of  lattice configuration. 

— the machine-learning algorithm allows us to restore a 
gauge-invariant order parameter in the whole physical region 
of the parameter space after being trained on lattice 
configurations at one unphysical point in the lattice parameter 
space; 

—the neural network may learn essential properties of the 
lattice field theory: group symmetry, gauge invariance etc.;



Use artificial neural network, 
       together with Monte Carlo to find 
  
   — gluonic field configurations responsible  
       for color confinement in Yang-Mills theory. 

   — QCD endpoint at real baryonic chemical potential.

Future developments (very briefly)


