Anisotropic collective flow and development of the corresponding measurement techniques for the MPD experiment at NICA collider

<u>Arkadiy Taranenko¹</u>, Dim Idrisov¹, Vinh Ba Luong¹, Nikolay Geraksiev^{2,3}, Petr Parfenov¹, Alexander Demanov¹, Alexey Povarov¹, Viktor Kireyeu², Evgeny Volodihin¹, Anton Truttse¹, Dmitri Blau⁴, Oleg Golosov¹, Evgeni Kashirin¹

> ¹National Research Nuclear University MEPhl ²VBLHEP JINR ³FPT, Plovdiv University "Paisii Hilendarski" ⁴Kurchatov Institute, Moscow

> > For the MPD Collaboration

This work is supported by the RFBR according to the research project No. 18-02-40086

The Conference "RFBR Grants for NICA", 20-23 October 2020, Dubna, Russia

Research project No. 18-02-40086: "Anisotropic collective flow and development of the corresponding measurement techniques for the MPD experiment at NICA collider"

The goal of this project is to develop and deploy experimental measurement techniques for the azimuthal collective flow measurement with the MPD experiment at the NICA collider for different types of hadrons produced in nucleus-nucleus collisions.

As a result of the project implementation a numerical modelling of the anisotropic collective flow based on the modern Monte-Carlo event generators of heavy-ion collisions with subsequent simulation of the realistic response of the MPD detector subsystems based on the GEANT platform and reconstruction algorithms build in the MPDROOT will be performed.

A set of simulated heavy-ions collisions will be used for deploying of the existing and development of new algorithms for the measurement of the anisotropic collective flow which will utilize different combinations of the MPD detector subsystems.

Petr Parfenov, "What do anisotropic flow measurements can tell us about the matter created in the little bang at NICA?", Models/Data (22/10/2020, 15:10)

Dim Idrisov: "The comparison of methods for anisotropic flow measurements with the MPD Experiment at NICA" (22/10/2020, 15-30)

Outline

- Introduction: Why measure anisotropic flow?
- Beam energy dependence of anisotropic flow.
- What to expect for flow at NICA energies: Models vs Data
- Sensitivity of different methods to flow fluctuations and nonflow
- Feasibility study of anisotropic flow of identified hadrons and V0 particles in MPD (NICA)
- Summary and outlook

Anisotropic Collective Flow at RHIC/LHC

Initial eccentricity (and its attendant fluctuations), ε_n , drives momentum anisotropy, v_n , with specific viscous modulation

Anisotropic Collective Flow at top RHIC / LHC

STAR PRL118 (2017) 212301

 $\frac{V_n}{p_T} (\underline{p_T}, \underline{centrality}) - \text{ sensitive to the early} stages of collision. Important constraint for transport properties: EOS, <math>\eta/s$, ζ/s , etc.

v_n of identified hadrons:

<u>Mass ordering at **p**_T < 2 GeV/c</u> (hydrodynamic flow, hadron rescattering)

Baryon/meson grouping at **p**_T > 2 GeV/c

(recombination/coalescence), Number of constituent quark (NCQ) scaling

No difference between particles and antiparticles

Beam energy dependence of anisotropic flow

Phys. Rev. Lett. 110, 142301 (2013)

- Minimum in slope of directed flow (dv_1/dy) as a function of beam energy for baryons
- Small change in $v_2(p_T)$ for inclusive and identified charged hadrons
- Substantial particle-antiparticle split in v₂ at lower energies

Strong energy dependence of v2 at $\sqrt{s_{_{NN}}}$ =3-11 GeV

Anisotropic Flow at NICA energies: Data vs Models

Anisotropic flow at NICA energies Experimental Data:

(1) E895 Collaboration Au+Au at 2.7, 3.32, 3.85 and 4.3 GeV

- (2) NA61/NA49 Pb+Pb at 5.1, 7.6 and 8.9 GeV
- (3) STAR Collaboration Au+Au at 4.5, 7.7 and 11.5 GeV

Anisotropic flow at NICA energies Models:

(1) String/Hadronic Cascade Models: UrQMD, HSD, SMASH, JAM, DCM-QGSM

(2) Hybrid Models: viscous hydro+cascade (vHLLE+UrQMD и MUSIC+UrQMD) и parton/string models (AMPT, PHSD и PHQMD)

MEPhI in NA61/SHINE: Golosov. O, Kashirin E, (ICPPA 2020)

vHLLE+UrQMD: Elliptic flow at top RHIC energy

Reasonable agreement between results of vHLLE+UrQMD model and published PHENIX data for 200 GeV including KET/nq scaling

Elliptic flow at NICA energies: Models vs Data comparison

Iu.A. Karpenko, P. Huovinen, H. Petersen, M. Bleicher , Phys.Rev. C91 (2015) no.6, 064901

Elliptic flow at NICA energies: Models vs Data comparison

Pure String/Hadronic Cascade models give smaller v₂ signal compared to STAR data for Au+Au $\sqrt{s_{NN}}$ =7.7 GeV and above

Elliptic flow at NICA energies: Models vs Data comparison

Pure String/Hadronic Cascade models give similar v_2 signal compared to STAR data for Au+Au $\sqrt{s_{NN}}$ =4.5 GeV

Relative elliptic flow fluctuations at 11.5 GeV and 7.7 GeV

Star data: L. Adamczyk et al. (STAR Collaboration). Phys. Rev. C 86, 054908 (2012)

- Relative v₂ fluctuations (v₂{4}/v₂{2}) observed by STAR experiment can be reproduced both in the string/cascade models (UrQMD, SMASH) and hybrid model (AMPT with string melting)
 - Dominant source of v₂ fluctuations: participant eccentricity fluctuations in the initial geometry

MPD Experiment at NICA

Event plane, centrality:

FHCal (2<|η|<5) or TPC (|η|<1.5)

Time Projection Chamber (TPC)

➤Tracking of charged particles

within ($|\eta| < 1.5$, 2π in ϕ)

➢PID at low momenta

Time of Flight (TOF)

➢PID at high momenta

2<η<5 **FHCal**

Setup, event and track selection

Elliptic flow measurements using v₂ of produced particles in TPC

$$u_{2} = \cos 2\varphi + i \sin 2\varphi = e^{2i\varphi}$$
(1)

$$Q_{2} = \sum_{j=1}^{M} \omega_{j} u_{2,j}, \Psi_{2,\text{TPC}} = \frac{1}{2} \tan^{-1} \left(\frac{Q_{2,y}}{Q_{2,x}} \right)$$
(2)
Scalar Product: $v_{2}^{\text{SP}} \{ Q_{2,\text{TPC}} \} = \frac{\langle u_{2,\eta \pm} Q_{2,\eta \mp}^{*} \rangle}{\sqrt{\langle Q_{2,\eta +} Q_{2,\eta -}^{*} \rangle}}$ (3)

$$(1) \qquad -5 < \eta < -2 \qquad -1.5 < \eta < 1.5 \qquad TPC \qquad 0.2 < p_{T} < 3 \text{ GeV/c} \qquad FHCal \qquad 0.2 < p_{T} < 3 \text{ GeV/c} \qquad fHCal \qquad 0.2 < p_{T} < 3 \text{ GeV/c} \qquad fHCal \qquad 0.2 < p_{T} < 3 \text{ GeV/c} \qquad fHCal \qquad 0.2 < p_{T} < 3 \text{ GeV/c} \qquad fHCal \qquad 0.2 < p_{T} < 3 \text{ GeV/c} \qquad fHCal \qquad 0.2 < p_{T} < 3 \text{ GeV/c} \qquad fHCal \qquad 0.2 < p_{T} < 3 \text{ GeV/c} \qquad fHCal \qquad 0.2 < p_{T} < 3 \text{ GeV/c} \qquad fHCal \qquad fHCal$$

Event Plane: $R_2^{\text{EP}}\{\Psi_{2,\text{TPC}}\} = \sqrt{\langle \cos[2(\Psi_{2,\eta+} - \Psi_{2,\eta-})] \rangle} \quad v_2^{\text{EP}}\{\Psi_{2,\text{TPC}}\} = \frac{\langle \cos[2(\varphi_{\eta\pm} - \Psi_{2,\eta\mp})] \rangle}{R_2^{\text{EP}}\{\Psi_{2,\text{TPC}}\}}$ (4)

Q-cumulants:

$$\langle 2 \rangle_2 = \frac{|Q_n|^2 - M}{M(M-1)} \approx v_2^2 + \delta \quad \langle 4 \rangle_2 = \frac{|Q_n|^4 + |Q_{2n}|^2 - 2|Q_{2n}Q_n^*Q_n^*| - 4M(M-2)|Q_n|^2 + 2M(M-3)}{M(M-1)(M-2)(M-3)} \approx v_2^4 + 4v_2^2\delta + 2\delta^2$$

$$v_{2}\{2\} = \sqrt{\langle\langle 2\rangle\rangle} \qquad v_{2}\{4\} = \sqrt{2\langle\langle 2\rangle\rangle^{2} - \langle\langle 4\rangle\rangle} \qquad (5)$$

Event plane method using v_1 of particles in FHCal

Using v_1 of particles in FHCal to determine Q_n

$$Q_{1} = \frac{\sum E_{i} e^{i\varphi_{i}}}{\sum E_{i}}, \Psi_{1,\text{FHCal}} = \tan^{-1}\left(\frac{Q_{1,y}}{Q_{1,x}}\right) \quad (1)$$

E – energy deposition in FHCal modules (2< $|\eta|$ <5)

$$R_n\{\Psi_{1,\text{FHCal}}\} = \langle \cos[n(\Psi_{\text{RP}} - \Psi_{1,\text{FHCal}})] \rangle \quad (2)$$

$$v_{2}\{\Psi_{1,\text{FHCal}}\} = \frac{\langle \cos[n(\varphi - \Psi_{1,\text{FHCal}})]\rangle}{R_{n}\{\Psi_{1,\text{FHCal}}\}}$$
(3)

Energy distribution in FHCal

v₂ of V0 particles: invariant mass fit method

Data set:

• 25 million events, UrQMD 3.4 non-hydro, 11.0 GeV, minbias

Geant4 simulation, full reconstruction with:

• TPCv7, TOFv7, FHCal

Centrality by TPC multiplicity, Event-plane method with FHCal Particle decays reconstructed with MpdParticle realistic cuts Differential flow signal extraction by bins in transverse momentum (or rapidity) with a simultaneous fit

$$v_{2}^{SB}(\mathbf{m}_{inv},\mathbf{p}_{T}) = v_{2}^{S}(\mathbf{p}_{T}) \frac{\mathbf{N}^{S}(\mathbf{m}_{inv},\mathbf{p}_{T})}{\mathbf{N}^{SB}(\mathbf{m}_{inv},\mathbf{p}_{T})} + v_{2}^{B}(\mathbf{m}_{inv},\mathbf{p}_{T}) \frac{\mathbf{N}^{B}(\mathbf{m}_{inv},\mathbf{p}_{T})}{\mathbf{N}^{SB}(\mathbf{m}_{inv},\mathbf{p}_{T})}$$

Sensitivity of different methods to flow fluctuations

Elliptic flow fluctuations:

 $\sigma_{v_2}^2 = \left\langle v_2^2 \right\rangle - \left\langle v_2 \right\rangle^2$

The difference between v_2 {2} and v_2 {4}:

$$v_2\{2\} \approx \langle v_2 \rangle + \frac{1}{2} \frac{\sigma_{v_2}^2}{\langle v_2 \rangle}, v_2\{4\} \approx \langle v_2 \rangle - \frac{1}{2} \frac{\sigma_{v_2}^2}{\langle v_2 \rangle}$$

The difference between $v_2^{EP}\{\Psi_{1,FHCal}\}$ and $v_2^{EP}\{\Psi_{2,TPC}\}$:

$$v_2^{\text{EP}} \{ \Psi_{1,\text{FHCal}} \} \approx \langle v_2 \rangle, v_2^{\text{EP}} \{ \Psi_{2,\text{TPC}} \} \approx \langle v_2 \rangle + \frac{1}{2} \frac{\sigma_{v_2}^2}{\langle v_2 \rangle}$$

J. Adam et al. The ALICE Collaboration Phys. Rev. Lett. 116 (2016) 132302

Comparison of v2 measurements using different method

Performance study of v_2 of charged hadrons in MPD

Reconstructed (reco) and generated (true) v₂ values are in a good agreement for all methods

Au+Au vs. Bi+Bi collisions for reconstructed data in MPD

TPC event plane

The results show a little difference for resolution and elliptic flow between two colliding systems

Au+Au vs. Bi+Bi collisions for reconstructed data in MPD

FHCal event plane

Expected small difference between colliding systems

v₁(y): Bi+Bi vs Au+Au

Expected small difference for v1 (y) for particles produced in Au+Au and Bi+Bi collisions.

Performance study for v_2 of V0 particles

Reasonable agreement between reconstructed and generated v_2 signals for both K⁰ and A

Performance study for v_1 of V0 particles

Reasonable agreement between reconstructed and generated v_1 signals for both K⁰ and A

$v_2(p_T)$ and $v_3(p_T)$ of identified hadrons

P.Parfenov "Elliptic (v_2) and triangular (v_3) anisotropic flow of identified hadrons from the STAR Beam Energy Scan program", ICPPA 2020

Outlook: triangular flow at NICA

Models show that higher harmonic ripples are more sensitive to the existence of a QGP phase

In models, v₃ goes away when the QGP phase disappears????

Summary and outlook

- v₂ at NICA energies shows strong energy dependence:
 - > At $\sqrt{s_{NN}}$ =4.5 GeV v₂ from UrQMD, SMASH are in a good agreement with the experimental data
 - > At $\sqrt{s_{NN}} \ge 7.7$ GeV UrQMD, SMASH underestimate v_2 need hybrid models with QGP phase
 - > Lack of existing differential measurements of v_2 (p_T , centrality, PID, ...)
- Comparison of methods for elliptic flow measurements using UrQMD model:
 - > The differences between methods are well understood and could be attributed to non-flow and fluctuations
- Feasibility study for elliptic flow in MPD:
 - v₂ of identified charged hadrons: results from reconstructed and generated data are in a good agreement for all methods
 - v₂ of K⁰ and Λ particles: results from reconstructed (using invariant mass fits) and generated data are in a good agreement
- Small differences in v₂ for 2 colliding systems (Au+Au, Bi+Bi) were observed as expected

Outlook:

> v_1, v_2 and v_3 measurements for the hybrid models (production of 60 M events for vHLLE+UrQMD at $\sqrt{s_{NN}}$ = 11 GeV is ongoing)

Thank you for you attention

Backup

Setup, event and track selection

Results for v₂ from UrQMD model of Au+Au collisions at $\sqrt{s_{NN}} = 7.7$ GeV

 v_2 {4} is smaller than v_2 {2} due to fluctuations and nonflow

Description of event plane method

$$\mathbf{Q}_{n} = \sum_{j=1}^{N} w_{n}(j) e^{in\phi_{j}} = |\mathbf{Q}_{n}| e^{in\Phi_{n}}$$
 (1)

$$Q_n \cos(n\Psi_n) = X_n = \sum_i w_i \cos(n\phi_i),$$
$$Q_n \sin(n\Psi_n) = Y_n = \sum_i w_i \sin(n\phi_i),$$

$$\Psi_n = \left(\tan^{-1} \frac{\sum_i w_i \sin(n\phi_i)}{\sum_i w_i \cos(n\phi_i)} \right) / n$$
 (2)

• η -sub EP method: resolution of the reaction plane Ψ_2 obtained from 2 sub-events

Left		Right
-1.5 < η < -0.05		0.05 < η < 1.5
Left half ((η<-0.	05) → η₋

Right half (η >0.05) $\rightarrow \eta_{+}$

$$v_{2}\{\eta \text{-sub,EP}\} = \frac{\langle cos[n(\phi_{\eta\pm} - \Psi_{2,\eta\mp})] \rangle}{\sqrt{\langle cos[n(\Psi_{2,\eta\pm} - \Psi_{2,\eta-})] \rangle}}$$
(3)

Description of scalar product method

$$u_n = \cos n\phi + i\sin n\phi = e^{in\phi} \qquad (1)$$

$$Q_n = \sum_{j=1}^{M} u_{n,j} = \sum_{j=1}^{M} e^{in\varphi_j}$$
 (2)

- u_n particle unit vector
- Q_n event flow vector(Q-vector)
- Elliptic flow measured using correlation between u_n and Q_n

Left	Right
-1.5 < η < -0.05	0.05 < η < 1.5

Left half (η <-0.05) $\rightarrow \eta_{-}$ Right half (η >0.05) $\rightarrow \eta_{+}$

$$\mathbf{v}_{2}^{SP}\{Q_{2,\mathrm{TPC}}\} = \frac{\left\langle u_{2,\eta\pm}Q_{2,\eta\mp}^{*}\right\rangle}{\sqrt{\left\langle Q_{2,\eta\mp}Q_{2,\eta\mp}^{*}\right\rangle}} \quad (3)$$

Results for v₂ for reconstructed events of MPD

35

Eccintricity: Bi+Bi vs Au+Au

UrQMD model predicts small difference between ϵ_n of Au+Au and Bi+Bi

Sensitivity of different orders cumulants to elliptic flow fluctuations

 How fluctuations affect the measured values of V_n. The effect of the fluctuations on V_n estimates can be obtained from

$$\langle \mathbf{v}_n^2 \rangle = \overline{\mathbf{v}}_n^2 + \sigma_{\mathbf{v}_n}^2, \quad \langle \mathbf{v}_n^4 \rangle = \overline{\mathbf{v}}_n^4 + 6\sigma_{\mathbf{v}_n}^2 \overline{\mathbf{v}}_n^2$$

 $\mathbf{v}_n\{2\} = \sqrt{\langle \mathbf{v}_n^2 \rangle}, \quad \mathbf{v}_n\{4\} = \sqrt[4]{2\langle \mathbf{v}_n^2 \rangle^2 - \langle \mathbf{v}_n^4 \rangle}$

The difference between v_n{2} and v_n{4} is sensitive to not only nonflow but also to the event-by-event v_n fluctuations.

$$\mathbf{v}_n\{2\} = \overline{\mathbf{v}}_n + \frac{1}{2} \frac{\sigma_{\overline{v}_n}^2}{\overline{\mathbf{v}}_n}, \quad \mathbf{v}_n\{4\} = \overline{\mathbf{v}}_n - \frac{1}{2} \frac{\sigma_{\overline{v}_n}^2}{\overline{\mathbf{v}}_n}$$

The difference between v_n {2} with and without $\Delta \eta$ gap is driven by the contribution from nonflow

Ilya Selyuzhenkov for the ALICE collaboration, Prog.Theor.Phys.Suppl. 193 (2012) 153-158

Cumulant results from Beam Energy Scans

The magnitude and trend of the fluctuations, have weak beam energy dependence Methods of flow measurements have different sensitivity to flow fluctuations

Cumulant results from Beam Energy Scans

Comprasssion of (a) v_2 {2} vs. $\langle N_{ch} \rangle$, (b) v_2 {4} vs. $\langle N_{ch} \rangle$ and (c) thir ratio for Au+Au collisions

Niseem Magdy, Nucl.Phys.A 982 (2019) 255-258

v₂ versus transverse momentum for protons measured in semi-central events and around mid-rapidity.

N. Bastid, et al., Phys.Rev. C72 (2005) 011901

arXiv:nucl-ex/0504002

Results for v₂ from UrQMD model of Au+Au collisions at $\sqrt{s_{NN}} = 7.7$ GeV

• Total number of generated minimum bias

events - 88 M

• Particle selection: charged hadrons,

 $0.2 < p_T < 3 \text{ GeV/c}$

- Configuration of cumulant method:
 - 1. RFP and POI: charged hadrons;
 - 2. calculations were performed taking into account

the effect of autocorrelation

• All 3 methods have the same kinematical cuts

Left	Right
-1.5 < η < -0.05	0.05 < n < 1.5

Left half (η <-0.05) $\rightarrow \eta_{-}$ Right half (η >0.05) $\rightarrow \eta_{+}$

Results for v₂ for reconstructed events of MPD

