BM@N data analysis aimed at studying SRC pairs:

one-step single nucleon knockout measurement in inverse kinematics with a 48 GeV/c ¹²C beam

Maria Patsyuk

RFBR Grant Review October 2020

1

Short Range Correlations (SRCs)

R. Subedi et al. "Probing Cold Dense Nuclear Matter" Science 320, 1426 (2008).

Quasi-free (p,2p) scattering at BM@N

Inverse kinematics with a detection of A-2 system:

- High cross section compared to e-scattering
- Suppressing ISI/FSI using fragment tagging and accessing the ground state distribution of nucleons in ¹²C
- Access to neutron-rich/exotic unstable nuclei (impossible with a fixed target)

Pilot experiment at BM@N in 2018

MF: ¹²C(*p*,2*p*)¹¹B

SRC: ¹²C(*p*,2*p*)¹⁰B,¹⁰Be

Quasi-free (p,2p) scattering

Quasi-free (p,2p) scattering: reaction mechanism

Remove a single nucleon:

~90° c.m. scattering

 \rightarrow Reconstruct initial nucleon momentum p_{miss} from scattered particles

 $p_{miss} = p_1 + p_2 - p_{beam}$

Selection of high momentum:

Single proton knockout

contaminated by inelastic scattering (IE) and ISI / FSI

7

Single proton knockout

- fragment tagging removes ISI / FSI
- select quasi-elastic
 scattering (bound ¹¹B)
 under large
 momentum transfer

Initial proton momentum

High momentum tail – ISI/FSI

Calculation of QE (p, 2p) scattering off a p-shell nucleon in 12C w/o ISI/FSI

10

Recoil fragment momentum

Fragment not impacted by proton multiple scattering → fragment tagging selects quasi-free unperturbed single-step reactions

Access to ground-state properties of ¹²C

We show that for the first time we can probe a single-step knockout reaction

First study of SRCs in inverse kinematics

Hard breakup of SRC pairs

np pair: ¹²C(p,2p) ¹⁰B pp pair: ¹²C(p,2p) ¹⁰Be

Knocked-out

proton

Identifying SRCs

23 np pairs 2 pp pair

-> np dominance

R. Subedi et al., Science 320 (2008)

+ proton-proton opening angle (guided by simulation)

New observable: Fragment (SRC pair c.m.) momentum

direct extraction: $\sigma = (156 \pm 27) \text{ MeV/c}$ -> small c.m. momentum

Scale separation in high-momentum regime

SRC: universal high-momentum tail

-> nuclear wave function factorizes into 2-body and A-2 systems

$$\Psi \xrightarrow{r_{ij} \to 0} \sum_{\alpha} \varphi_{\alpha}(\boldsymbol{r}_{ij}) A_{ij}^{\alpha}(\boldsymbol{R}_{ij}, \{\boldsymbol{r}\}_{k \neq ij})$$

(universal two-nucleon momentum distributions, A-independent)

M. Alvioli, C. Ciofi degli Atti, H. Morita, Phys. Rev. C 94 (2016)

10

R. Cruz-Torres et al., Nature Physics (2020) R. Weiss, B. Bazak, N. Barnea, Phys. Rev. C 92 (2015) J.-W. Chen, W. Detmold, J. E. Lynn, A. Schwenk, PRL 119 (2017) R. Weiss et al., Phys. Lett. B 780 (2018)

- found also in *ab-initio* EFTs,
- applied in Generalized Contact Formalism

Strong pair correlation

nucleon momentum not balanced by A-1

-> NN back-to-back emission

Experimental evidence for factorization

SRC studies in many-body dynamics entering new era

 "Transparent" nucleus: Extract ground-state distributions in strongly interacting many-body system with fragment tagging (suppress ISI/FSI)

 1st SRC experiment in inverse kinematics: evidence for scale separation

Next measurement

- increase statistics by order(s) of magnitude for detailed comparison with calculations
- improve detector resolutions
- employ multi-particle tracking

New (non-magnetic) calorimeter

Sandwich like structure of Sci – Fe – Sci (~ 150 x 230 x 25 cm³)

Sci layer
 High-performance Sci. bars (~25 each arm)
 Sci + PMT Tests to reach <70ps ToF resolution

Fe layer ~10 cm
 to be optimized to achieve strong p-pion separation

- 3. Sci layer for dE
 - determine number of initial p and pions
 - in statistical approach: pion contribution is small and can be subtracted in p_{miss} distribution

The grant objectives

Analysis of the reactions at high momentum transfer and high initial momentum of the struck nucleon: ${}^{12}C + p --> {}^{11}B + pp$, ${}^{12}C + p --> {}^{10}B + pp + X$, ${}^{12}C + p --> {}^{10}Be + pp + X$, ${}^{12}C + p --> {}^{10}Be + pp + X$, ${}^{12}C + p --> {}^{10}B + np + X$, ${}^{12}C + p --> {}^{10}B + np + p$, ${}^{12}C + p --> {}^{10}B + np + p$, ${}^{12}C + p --> {}^{10}B + np + p$

- 1. Calibration and alignment of subsystems
- 2. Signal correlations between subsystems
- 3. Reconstruction of the interaction vertex
- 4. Reconstruction of p_{miss}
- 5. Corrections for acceptance, efficiency and other detector effects
- 6. Inclusive quasi-elastic scattering on a single nucleon in inverse kinematics
- 7. Inclusive spectra of protons and neutrons with large momenta
- 8. Comparison of results with models, other experimental data and theoretical calculations
 - 1. Calculate spectroscopic factors
 - 2. Calculate amplitude of p<NN> -> p NN
 - 3. Propagation of the initial proton and final state particles through the nuclear medium

first measurement of SRCs in inverse kinematics - established the factorization theorem

Achievements

- 1. Identification of a quasi-elastic (QE) scattering reaction ¹²C(p, 2p)¹¹B
- first measurement of SRCs in inverse kinematics - established the factorization theorem
- 3. Theoretical calculations

Yu. N. Uzikov "QE knockout of nucleon from SRC pair in ¹²C(p,2pN)¹⁰A" Oct 22, 15:30

Achievements of my group

- Reconstruction, alignment, simulation of MWPC and Si
- 2. Matching MWPC-Si and Upstream tracks
- 3. Reconstruction, simulation tuning of DCH
- 4. TOF400 calibration and reconstruction of the vertex
- 5. TOF700 calibration
- 6. Charge calibration
- 7. Simulation studies using DCM-SMM generator
- 8. Global tracking, new tracking inside the magnet
- 9. New vertex finder

S. Merts "Global track and vertex reco in SRC and argon beam at BM@N" Oct 22, 14:50

Plans for 2021

- 1. Analysis of multitrack events
- 2. Analysis of reactions with recoil neutrons

3. Theoretical calculations:

Calculation of differential cross sections of the reactions ¹²C(p,2p)¹¹B, ¹²C(p,2pN)¹⁰A and pp/pn ratio in kinematics of the BM@N SRC experiment within the developed in 2019-2020 microscopic model with accounting for absorptions effects and spectroscopic factors for NN pairs and comparison the results with data.

4. Construction of fast TOF calorimeter, newT0 and veto box detectors, and beam counters5. Experimental setup optimization

Plans for my group for 2021

- 1. Analysis of multitrack events
- 2. Preparation for the next run in 2021:
 - 1. Simulations helping to finalize the design of the setup
 - 2. Manufacturing, tests of scintillator beam counters
 - 3. Simulations to find the optimal design of the new calorimeter
 - 4. Setting up the detectors in the hall, new frame for the calorimeter

Mii

Status of the theoretical work

- CONCLUSION

• Translationally-invariant shell model (TISM) applied for S_A^x and $n_{cm}(k_{cm})$ of the deuterons in the ${}^{12}C$ works reasonable well for the ${}^{12}C(p,pd){}^{10}B$ reaction at 670 MeV with transition to the g.s. of ${}^{10}B$ (s^4p^6) and its excited states $E_B^* > 20$ MeV (s^2p^8).

• TISM can be applied to BM@N data on quasi-elastic knok-out of nucleon from SRC NN pairs from the ^{12}C in exclusive reaction $^{12}C+p \to p+p+N+^{10}B$

The corresponding formalism is developed in the plane-wave approximation taking into account relativistic effects in the p+ < NN >→ p + N + N within the LFD approach.
pp/pn ratio obtained within TISM is in agreement with the data.

• Observed in ${}^{12}C(e,epp){}^{10}B$ S-wave $k_{c.m.}$ momentum distribution is a puzzle for TISM. Corresponding measurements of ${}^{12}C(p,pd){}^{10}B$ at BM@N conditions for s^4p^6 and s^2p^8 will be very important.

Courtesy of Yu. N. Uzikov

New LH₂ Target

- The target group is developing a new LH2 target with the same parameters (D = 6 cm, length = 30 cm)
- Target will be inside the SP-57 magnet gap to gain acceptance for the arms
- Veto box around target: thin scintillator detectors

The team

Local team	SRC international team
Timur Atovullaev	Julian Kahlbow
Nikolay Voytishin	Valerii Panin
Vasilisa Lenivenko	Eli Piasetzky
Mikhail Rumyantsev	Or Hen
Sergey Merts	Goran Johansson
Yuri Petukhov	Efrain Segarra
Vladimir Palichik	George Laskaris
Yuri Uzikov	

SRC studies in many-body dynamics entering new era

 "Tranparent" nucleus: Extract ground-state distributions in strongly interacting many-body system with fragment tagging (suppress ISI/FSI)

• 1st SRC experiment in inverse kinematics: evidence for scale separation

 Merge Radioactive Beam and SRC physics: Cold dense asymmetric nuclear matter

High-energy ion beam @ JINR Nuclotron

SRCs across the scales

B. Schmookler et al., Nature 566 (2019)

What do excess neutrons do?

Fraction of correlated protons / neutrons grow / saturate with neutron excess

-> protons "speed up"

What do excess neutrons do?

Heavy-to-light ratio: Impact of nuclear effects?

Limitations (e⁻ scattering)

- Stable targets
- N/Z < ~1.5
- N/Z grows with mass

Probing SRCs in normal kinematics

"Normal" kinematics

High-energy electromagnetic probe

Probing SRCs in inverse kinematics

Normal kinematics

Reaction: A (p,2pN) A-2

Inverse kinematics

- ✓ p_{miss}, p_{recoil}
- ✓ fragment ID + p_{A-2}
- \checkmark direct p_{CM}
- ✓ exotic nuclei

Incoming-beam identification

Proton vertex

Two-Arm Spectrometer

Position and Time calibration with single+multi foil Pb target

QFS angular correlations

42

Fragment momentum

Simulation-based multi-dimensional fit

 $P/Z = f(\mathbf{x}_{MWPC}, \alpha_{MWPC}, \mathbf{x}_{DCH}, \alpha_{DCH})$

Momentum resolution unreacted ¹²C beam: $dp/p = 1.6\% (\sigma)$

Outlook

SRC pairing in asymmetric systems

Identifying SRCs

23 np pairs 2 pp pair

-> np dominance

- **1.** ¹¹B + FSI nucleon knockout? Result in #¹⁰B ~ ¹⁰Be due to similar np / pp cross section.
- **2. QE mean-field with excited** ¹¹**B?** Estimated maximal contribution of 3 (¹⁰B) and 1 (¹⁰Be) events.

+ proton-proton opening angle

Scale separation in highmomentum regime

$$n_{\alpha,NN}^{A}(Q,q) = \tilde{C}_{\alpha,NN}^{A}(Q) \times |\tilde{\varphi}_{NN}^{\alpha}(q)|^{2}$$

$$\int universal \int strongly correlated pair [universal 2-body]$$

t distance]

Factorization of a SRC distribution function: $f(p_{rel}, p_{c.m.}, \theta_{rel,c.m.}) \approx C(p_{c.m.}) \times \varphi(p_{rel})$

Experimental evidence: distributions are independent of $\theta_{rel,c.m.}$. R. Cruz-Torres, D. Lonardoni et al., Nature Physics (2020)

rmalism

Reconstructed initial momentum

Fragment tagging suppresses ISI / FSI

Simulation input: ${}^{12}C p_{3/2}$ shell distribution w/o FSI

Fragment recoil momentum

- Fragment not impacted by ISI / FSI: reconstruct p_{miss}
- Adiabatic approximation holds $p_{miss} = -p_{A-1}$

$\ensuremath{\mathsf{P}_{\mathsf{miss}}}$ balances the recoil fragment momentum

Another indication that the reaction is quasi-elastic

Access to ground-state properties of 12C

Single-step nucleon knockout Transparent part of the reaction

Strong vs. weak interaction

Scale separation: Evidence for factorization between pair and A-2 !

