

RUSSIAN FOUNDATION FOR BASIC RESEARCH

Development of the Information Systems for online and offline data processing in the NICA experiments

K. Gertsenberger, I. Alexandrov, I. Filozova, E. Alexandrov, A. Nozik, A. Moshkin, A. Chebotov, P. Klimai, M. Mineev, D. Pryahina, G. Shestakova, A. Yakovlev Supported by RFBR Grant №18-02-40125

> The Conference «RFBR Grants for NICA» 20-23 October 2020 Joint Institute for Nuclear Research, Dubna, Russia

> > 22 October 2020

Data Processing Pipeline

matched from "Data Acquisition System TDR", DAQ Collaboration

Prerequisites of the data management with IS

- high interaction rate, e.g. BM@N: up to 50 kHz
- high particle multiplicity, up to 1000 charged particles for central collisions at the NICA energies
- NICA large data stream:

is estimated up to 20 PB of raw data per year 500m simulated events ~ 0.5 PB (with digits: ×7)

Performed review of modern IS in HEP experiments showed: "IS are used in all large physics experiments and have become an important part of the software, but the existing solutions are highly dependent on specifics of conducted experiments and are an inseparable part of them"

E. Alexandrov, I. Alexandrov, K. Gertsenberger, and et. al, Information Systems for Online and Offline Data Processing in Modern High-Energy Physics Experiments, Modern Information Technologies and IT-Education, No. 15(3), 654-671 (2019)

Information Systems for online & offline processing

RFBR Grant 2019 – 2021: Development of Information Systems for Online and Offline Data Processing for the Experimental Setups of the NICA Complex

Integration with the NICA frameworks

The software BmnRoot, MPDRoot and SPDroot are developed for event simulation, reconstruction of experimental or simulated data and following physics analysis of particle collision events.

C++ classes, Linux OS support, based on ROOT and FairRoot

The frameworks are available in GitLab@JINR: https://git.jinr.ru/nica/

Electronic Logbook System

Electronic Logbook (e-Log)

- e-Log platform is a collaborative tool which provides shift crews with an interface to store and share information with offline users on various events or problems occurred in the experiment during its operation.
- The e-Log system uses a developed Logbook Database based on PostgreSQL which ensures correct multi-user access, data consistency, integrity and automatic backup of the stored data.
- A part of e-Log data is automatically transferred to the offline database of the experiment to use in offline analysis.
- Developed interfaces provide a unified access to required logbook data for various online and offline systems, and convenient viewing, transparent managing and searching for required information by users.

Electronic Logbook Data

- record number
- record type
- record time
- current shift leader
- period number
- run number
- DAQ status
- trigger type
- magnetic field
- beam particle
- beam energy
- target / second particle
- record comment

record information during experiment runs on current events, states of various systems, operation conditions of detectors and many others which can be further used in the processing and physics analysis of the particle collision events

e-Log Database scheme

function file_upload(file_path text, rec_id int)

e-Log Communication Scheme

Web-interface of the e-Log Platform

BM@N Electr	onic Logboo	k		https://bmn-elog.jinr.ru								Logged in as shift			
Home New Find	Last day	Account	Reference Bo	Book (*) Page: 1 v of 282 (*) (*)								Number of items per page: 10 • Logout			
Date	🗘 Shift Leader 🛇	> Type 🛇	N₂ Run ≎	Trigger 🗘	DAQ Status	♦ SP-41, A ♦	SP-57, A 🗘	VKM2, A 🔇	Beam 🗘	Energy, GeV 🗘	Target 🔇	Comment 🗘	Attachment		
	ļ														
2018-04-05 11:47:06	Rumyantsev	Inform All	5185 per.7	Special Trigger	All	0	0	0	Kr	2.94	Cu (2 mm)	End of the RUN7			
2018-04-05 11:09:20	Rumyantsev	New Run	5184 per.7	Beam Trigger + Si >3	All	1250	50	125	Kr	2.94	Cu (2 mm)	Cu target; Tr.= BC1 & BC2 & VC & Si>3 VKM2: I=125A, SP-57=50A, SP41=1250A; 100 k			
2018-04-05 08:12:35	Rumyantsev	New Run	5183 per.7	Beam Trigger + Si >3	All	1250	50	125	Kr	2.94	Cu (2 mm)	Cu target; Tr.= BC1 & BC2 & VC & Si>2 VKM2: I=125A, SP-57=50A, SP41=1250A; 120 k			
2018-04-05 07:46:35	Babkin	New Run	5182 per.7	Beam Trigger + Si >3	All	1250	50	125	Kr	2.94	Cu (2 mm)	Cu target; Tr.= BC1 & BC2 & VC & Si>3 VKM2: I=125A, SP-57=50A, SP41=1250A; 208 kev			
2018-04-05 07:41:29	Babkin	New Run	5180 per.7	Beam Trigger + Si >3	All	1250	50	125	Kr	2.94	Cu (2 mm)	Cu target; Tr.= BC1 & BC2 & VC & Si>3; VKM2: I=125A, SP-57=50A, SP41=1250A; 201 kev			
2018-04-05 07:25:08	Babkin	New Run	5179 per.7	Beam Trigger + Si >3	All	1250	50	125	Kr	2.94	Cu (2 mm)	Cu target; Tr.= BC1 & BC2 & VC & Si>3; VKM2: I=125A, SP-57=50A, SP41=1250A; 201 kev			
2018-04-05 06:01:07	Babkin	New Run	5178 per.7	Beam Trigger + Si >3	All	1250	50	125	Kr	2.94	Cu (2 mm)	Cu target, Tr.= BC1 & BC2 & VC & Si>3; VKM2: I=125A, SP-57=50A, SP41=1250A; 201 kev			
2018-04-05 05:27:39	Babkin	New Run	5177 per.7	Beam Trigger + Si >3	All	1250	50	125	Kr	2.94	Cu (2 mm)	Cu target, Tr.= BC1 & BC2 & VC & Si>3; VKM2: I=125A, SP-57=50A, SP41=1250A; 204 kev			
2018-04-05 05:27:06	Babkin	New Run	5176 per.7	Beam Trigger + BD>3	All	1250	50	125	Kr	2.94	Cu (2 mm)	Cu target; Tr.= BC1 & BC2 & VC & BD>3; VKM2: I=125A, SP-57=50A, SP41=1250A; 150 kev			
2018-04-05 04:47:27	Babkin	New Run	5174 per.7	Beam Trigger + BD>3	All	1250	50	125	Kr	2.94	Cu (2 mm)	Cu target; Tr.= BC1 & BC2 & VC & BD>3; VKM2: I=125A, SP-57=50A, SP41=1250A; 213 kev			

2020 - software team (contact e-mail: gertsen@jinr.ru)

Common FreeIPA Authentication: Administrator, Editor, Reader roles

File Attachments (text description, photo) Email Subscription to selected event types Multi-Column Sorting Logbook Monitoring User Cabinet Easy Searching

e-Log: Notification Service

C++ database interface (autogenerated API)

Class wrappers for logbook object with specific functions allow to access and manage the data without SQL statements in the experiment frameworks

ElogDbRecord – records written by a shift crew during the experiment runs which describe operating

modes of various systems and detectors and different types of events

- ElogDbType record types: 'Shift started', 'Problem report', 'Configuration', 'New Run', etc.
- ElogDbPerson a list of the experiment staff
- ElogDbTrigger dictionary of all possible trigger types
- ElogDbBeam dictionary of all possible beam particles
- ElogDbTarget dictionary of all possible targets
- ElogDbAttachment files attached to a record for detailed description of an event

<u>ElogDbConnection</u> – serves to open and close connections to the e-Log database ElogDbSearchCondition – forms criteria for selection of e-Log records

The main functions of the e-Log interface: <u>for data objects (static)</u>: *Create*, *Delete*, *Get*, *Search*, *PrintAll*. <u>for attributes (non-static)</u>: *Getters* and *Setters* functions, *Print*.

e-Log: Configuration and Deployment

Configuration File

{ "host" : "nc13.jinr.ru", //Database host "port" : "5432", //Database port "dbname" : "bmn elog", //Database name "dbA":true, //Authorization type //Experiment specific data columns "colVal": { "sp 41" : "SP-41, A", "sp 57" : "SP-57, A", "vkm2" : "VKM2, A"}, "columns" : [{"column" : "sp 41 int null"}, {"column" : "sp 57 int null"}, {"column" : "vkm2 int null"}], "expName":"MPD", //Experiment name "loginImage" :"login/images/bmn2.png", //Login image "loginLink":"http://bmn.jinr.ru", //Link to Web site "fillRunDB":true, //whether fill DB "sendNotif":true, //Notifications

Deployment Scheme

The Common Deployment System is based on Docker containers and shell scripts

It allows to install the Online Logbook System for all the experiments of the NICA project taking into account some specifics of the experiments

Electronic Logbook Completeness

- The first prototype of the Electronic Logbook was employed in the latest session of the BM@N experiment, and at present it contains records for all conducted BM@N runs.
- The Electronic Logbook System has been deployed on the NICA cluster and approved to use it for the next runs.
- The Common Deployment System can be used to install the Online Logbook System for all the experiments of the NICA project taking into account some specifics of the experiments.
- The Electronic Logbook System has been implemented (now tests of the deployment system are performed) and are actively used by collaboration members.

BM@N Electronic Logbook Runs 1 - 7 # records ~ 3 000

Geometry Information System

Detector Geometry Definition

• Geometry File

Description of basic detector volumes (sensitive + passive): dimensions, position, orientation, materials

Parameter File (optional)

Description of the detailed structure of the detector required for realistic simulation, digitization, hit reconstruction:

- the internal structure of the detector (stations, modules, layers, dead zones ...), as well as their orientation, position and layout..
- reading elements, e.g. strips (strip angle, strip width, reading order, etc.)
- other parameters required for simulation and reconstruction (width of gaps, direction of electron drift, etc.)

Basic Geometry Definitions

Geometry Module

File in the ROOT format containing a detector geometry

Setup Module

Consists of geometry module, link to the parent geometry module, its placement in the parent module (a transformation matrix or object of the TGeoMatrix class)

Setup

Combination of setup modules, which represents the full setup geometry

Geometry Information System

- is based on the Geometry Database to work with detector geometries of the NICA experiments and intended for storing and managing information on the geometry models of the detectors
- manages geometry modules as ROOT binary objects
- each setup module stores a tag, version, transformation matrix, link to the parent module
- manages full setups as a combination of geometry setup modules, magnetic field and materials
- manages versions of the modules and setups
- provide detector geometries for online (e.g. monitoring the current events) and offline (e.g. event reconstruction and analysis) systems

Client-Server Architecture of the Geometry IS

Three user roles: Lead Developer | Developer | User (Reader)

22 October 2020

Web-interface of the Geometry Database

BM@N Baryonic M	latter	BM@N Geo:	metry DataBase 🛛 🛓	_ ł	https://	/bmn-geodb.j	jinr.ru	ı	User	:: gertser		URE WEBACC	LOGOUT	
						Setup Modu	les							
Menu		You may edit	t the field Description . A new	value will be sa	<i>ied when the</i>	e focus is blur.						CR	EATE NEW SETUP MO	DULE
		Туре	Tag	Date	Author File		Transformation				Parent	ParFile Description		
IOME		BD	geom_BD_det_v2	2020-04-19	aleksand	geom_BD_det_v2	1.000	0.000	0.000	0.000	MWPC		geom_BD_de	×
							0.000	1.000	0.000	0.000			t_v2	
YIEW GEOMETRY	~						0.000	0.000	1.000	0.000				
DIT GEOMETRY	~	BD	bd_v1_run6	2019-12-24	aleksand	bd_v1_run6	1.000	0.000	0.000	0.000	MWPC		bd_v1_run6.g	×
EDIT SETUP							0.000	1.000	0.000	0.000			eo	
EDIT SETUP MODULES							0.000	0.000	1.000	0.000				
EDIT FILES		BD	bd_v1_0	2018-07-26	aleksand	v1	1.000	0.000	0.000	0.000	CAVE		bd_v1_0	×
EDIT MODULES							0.000	1.000	0.000	0.000				
EDIT MATERIALS							0.000	0.000	1.000	0.000				
EDIT_FIELDS		CSC	CSC_RunSpring2018	2020-04-19	aleksand	CSC_RunSpring2018	1.000	0.000	0.000	0.000	STS		CSC_RunSpri	×
							0.000	1.000	0.000	0.000			ng2018	
							0.000	0.000	1.000	0.000				
		DCH	DCH_RunWinter2016	2018-07-26	aleksand	DCH_RunWinter2016	1.000	0.000	0.000	0.000	CAVE		DCH_RunWin	×
Get in touch			_			_	0.000	1.000	0.000	0.000			ter2016	
							0.000	0.000	1.000	0.000				
Konstantin Gertsenberger		DCH	DCH_RunSpring2018	2019-12-24	aleksand	DCH_RunSpring2018	1.000	0.000	0.000	0.000	TOF1		DCH_RunSpri	×
							0.000	1.000	0.000	0.000			ng2018.root	
							0.000	0.000	1 000	0.000				

BM@N Geometry Database has filled with setup geometries for Run 7 and 6

Graphical User Interface Functions:

View	Edit	Download

Application Programming Interface (API)

Geometry API provides a set of ROOT macros intended for selecting and loading a required setup geometry and its components into the ROOT-based software of the experiment to perform simulation, reconstruction and physics analysis tasks

Signature	Description	Call Example	Comment		
<pre>void getSetupList();</pre>	<i>Get the list of available setups.</i> Print the list of available setups including tag, date of creation, author and description parameters for each approved setup.	getSetupList.c();	Return the available setups' list		
bool loadSetup (const char* setupTag, const char* moduleName);	<i>Load setup into the Fair framework.</i> The Geometry can be used in ROOT framework afterwards. Return FALSE if setup is not loaded, and TRUE if the loading is successful.	<pre>bool res = loadSetup("sis10 0_electron", "*");</pre>	"*" – all setup modules to be loaded		
void installLocalDB.C ();	<i>Install local database from server to</i> <i>client.</i> Download replica of central database to client computer.	installLocalDB ();	Require set variable DBL_FILE_P ATH before use.		
void installServerDB.C ();	<i>Install new server instance</i> . Install and init PostgreSQL database server	installServerDB ();	Required config file with name geodb.config.x ml		

calling API interface functions of the developed macros

Geometry Information System Completeness

- The developed Geometry Information System provides a central storage of the detector geometries and a set of convenient tools to manage geometry modules and software assemblies of various setup versions in the form of a combination of these modules and auxiliary files containing a description of magnetic field, detector materials and media.
- The geometries of the experiments stored in the database can be further used to process event data of the particle collisions.
- Collaboration members can search and select a required version of the geometry setup to work with.
- The Geometry Information System has filled with setup geometries for the last BM@N Run 7 an 6 and is ready to apply for the experiment.
- It can be employed in the other NICA experiments using developed unified installation script and customized interfaces.

Condition Database

Purposes of the Condition Database

- central data storage for offline data analysis in the highenergy physics experiments
- unified access and data management for all collaboration members
- correct multi-user data processing
- ensuring the actuality of the information being accessed (sessions and run parameters, technical and calibration data, etc.), data consistency and integrity
- excluding the multiple duplication and use of outdated data
- automatic backup of the stored data

Condition Database Diagram

storing information on experiment sessions and runs, detectors, parameters and parameter values, and generated simulation files

Stored parameters classification

- <u>Configuration data</u> is concerned with detector running mode, i.e. voltage settings as well as some programmable parameters for frontends electronics.
- Calibration data describes the calibration and the alignment of different subdetectors. Usually quantities are evaluated by running dedicated offline algorithms.
- Parameter data presents the state of detector subsystems. They include a variety of detector settings including the geometry and material definitions.
- Algorithm data is used to control the way algorithms operates. It includes, for example, cuts for selection noise channels excluded from the data processing.

User interfaces for the Condition Database

<u>Application Programming Interface</u> (API):

- integration the database with the experiment frameworks based on the ROOT package
- using stored information in online and offline event data processing

Web service:

- convenient viewing and managing up-to-date information in tabular view on the NICA experiments by collaboration members
- visualization of summary data in the form of diagrams and charts

Condition Database Architecture

Event Metadata System

Event Metadata System (EMS)

- main functions are description of particle collision events, storing of necessary event metadata, their management and convenient access, and organizing online and offline interfaces to the metadata
- is based on the Event Database called Event Catalogue, which contains summary properties of particle collision events and references to their storage location
- allows user to quickly search for a required set of events by various criteria and parameters for further processing and physics analysis
- is responsible for creating, maintaining and checking the quality of the catalogue of physics events

Metadata Structure

- period and run number
- file pointer (GUID)
- event number
- event time
- number of primary and all reconstructed tracks
- track number of positively and negatively charged particles
- primary and secondary particles found
- number of hits by detectors
- total input and output charge in the event
- software version...

EMS provide the following functions: summary description of collision events and their identifiers, which can be used to select events for a desired analysis goal, recording and storing event metadata, management and access to the metadata, organization of online and offline interfaces for selecting events of interest

Architecture of the Event Metadata System

<u>Web interface</u> for viewing and searching for event metadata stored in the Event Catalogue and retrieving events which satisfy given user parameters

Metadata API for writing new metadata to the Event Catalogue while data processing and requesting events by criteria for physics analysis in the experiment software

Ecosystem Services

FreeIPA: Single Authentication & Autorization

Monitoring Service

Monitoring Information Systems

\$ F	🕽 Unread 🕁 Starred 🙎 Contact 🔊 Tags 🛛 Attachment	₽ Filter	O Filter these messages <ctrl+shift+k></ctrl+shift+k>							
ኑ ★ 🛈	Subject	00	Correspondents			6	Date		~	
☆	[OK] PGSQL response time alert		Grafana			② 2:41 PM				
☆	Service Monitor on CentOS7: server1 - PGSQL state changed to UP		: :h@yandex.ru	:h@yandex.ru 🍈 2:40 PM						
☆	[Alerting] PGSQL response time alert		Grafana	a 💧 2:01 PM						
☆	Service Monitor on CentOS7: server1 - PGSQL state changed to ***	🍥 1:54 PM								
From G	From Grafana < h@yandex.ru> 🛱 Showard 🛱 Archive 👌 Junk 🛍 Delete								🗊 Delete	
Subject	Subject [OK] PGSQL response time alert									
To N	To Met									
[OK] PGSQL response time alert										
Grafana: Database monitoring warning!										
PGSQL response time										

Email Notifications

Summary

- The complex of the information systems solving the issues of unified multiuser access, data management, actuality and consistency of the information, and data backup will automate the processes of storing, processing and analyzing data, and provide a set of convenient information services for collaboration members.
- The development of the Electronic Logbook Platform and Geometry Information System has been completed, and the design of the Event Metadata System and Condition Database has been finished.
- RFBR support with the NICA grant enables to develop and significantly improve the Information Systems for experimental and simulated data processing.
- The implementation of the information systems is a necessary step for the successful operation of the complex, and high-quality data management will accelerate the achievement of scientific results.

Thank you for your attention!

Alexander NOZIK: PhD, senior researcher Peter KLIMAI: PhD, researcher...

MIPT participants

JINR LIT participants

RFBR Grant Collaboration №18-02-40125

Igor ALEXANDROV: PhD, head of sector Irina FILOZOVA: group leader Evgeniy ALEXANDROV: researcher Mikhail MINEEV: researcher Alexander YAKOVLEV: researcher Galina SHESTAKOVA: lead developer Daria PRIAKHINA: development engineer

JINR LHEP participants

Konstantin GERTSENBERGER: PhD, group leader Andrey MOSHKIN: development engineer Alexander CHEBOTOV: development engineer

thanks to the HybriLIT and NICA cluster teams for computing support

contact email: gertsen@jinr.ru