

Review of the BM@N physics and upgrade program

Peter Senger

Outline: > BM@N status quo

- The future heavy-ion research program:
 - Investigating nuclear matter at neutron star core densities
- Upgrading the BM@N detector system

Conference on RFBR Grants for NICA, 20 – 23 October 2020, JINR, Dubna, Russia

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072

NICA Heavy Ion Complex NICA

beams from p to Au, heavy ion energy 1- 3.8 GeV/n (17 kG Nuclotron magnets), Au intensity ~ few 10⁶ Hz

Baryonic Matter at Nuclotron (BM@N) Experiment

Drift chambers for tracking

Dipole magnet with 6 (half) GEM tracking chambers and 3 Silicon stations inside

Neutron detector

Forward hadron calorimeter

mRPC Time-of-flight detectors

Experiments performed at BM@N: Short-Range Correlations (SRC)

 $k < k_F$ Mean field region: Single nucleons $k > k_F$ High momentum region: Correlated pairs of nucleons, which are close together in space relative momentum, but a low c.m. mome to the Fermi momentum k_F . SRC probe nup partonic degrees-of-freedom in nuclear sy Valeri Panin, and Yuri Uzikov

on Thursday, 22. Oct. 2020

Correlated tail

n(k) 1

Mean Field Region

80% 20%

Experiment at BM@N with a 4A GeV C-beam:

 $^{12}C + p \rightarrow 2p + {}^{10}{}_5B + n \text{ (np SRC)}$ $^{12}C + p \rightarrow 2p + {}^{10}{}_4Be + p \text{ (pp SRC)}$

First fully exclusive measurement in inverse kinematics probing the residual A-2 nuclear system!

Experiments performed at BM@N: Lambda production in C + C, Al, Cu collisions at 4A GeV

Upgrading the BM@N experiment: Exploring nuclear matter at neutron star core densities

Neutron star mergers and heavy-ion collisions

The nuclear matter equation-of-state

The nuclear matter equation of state (EOS) describes the relation between density, pressure, temperature, energy, and isospin asymmetry

 $P = \delta E/\delta V |_{T=const}$ $V = A/\rho$ $\delta V/ \delta \rho = - A/\rho^2$ $P = \rho^2 \delta(E/A)/\delta \rho |_{T=const}$

Symmetric matter (δ =0):

- \succ E/A(ρ_o) = -16 MeV
- > slope $\delta(E/A)(\rho_o)/\delta\rho = 0$
- curvature K_{nm} = 9ρ² δ²(E/A)/δρ²
 (nuclear incompressibility)

Mass-density relation of neutron stars for different EOS

T. Klaehn et al., Phys. Rev. C74: 035802, 2006. Update by D. Blaschke, priv. comm.

Observable in heavy-ion collisions: Collective flow of nucleons

semi-central Au+Au collision at 2 AGeV

Collective flow of nucleons: driven by pressure gradient in the fireball

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

Nuclear incompressibility from collective proton flow

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

A. Le Fevre , Y Leifels, W. Reisdorf, J. Aichelin, Ch. Hartnack, Nucl. Phys. A945 (2016) 112

Nuclear incompressibility from collective proton flow

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

Alternative probe of the high-density EOS: Subthreshold production of strange particles

Poincering experiments at GSI SIS18 ($\rho \le 2.5\rho_0$): Subthreshold production of K⁺ mesons in Au+Au and C+C collisions $\rightarrow K_{nm} \approx 200 \text{ MeV}$ KaoS –Experiment: C. Sturm et al., Phys. Rev. Lett. 86 (2001) 39, Theory: Ch. Fuchs et al., Phys. Rev. Lett. 86 (2001) 1974

Future experiments with BM@N ($\rho \le 4 \rho_0$): \equiv (ssd) and Ω (sss) yield at subthreshold energies via multi-step collisions \rightarrow density \rightarrow EOS

$$\begin{array}{ll} pp \rightarrow \Xi^{\text{-}} \text{K}^{\text{+}} \text{K}^{\text{+}} p & (\text{E}_{thr} = 3.7 \text{ GeV}) \\ pp \rightarrow \Omega^{\text{-}} \text{K}^{\text{+}} \text{K}^{\text{+}} \text{K}^{0} p & (\text{E}_{thr} = 7.0 \text{ GeV}) \\ pp \rightarrow \Lambda \overline{\Lambda} pp & (\text{E}_{thr} = 7.1 \text{ GeV}) \\ pp \rightarrow \Xi^{\text{+}} \Xi^{\text{-}} pp & (\text{E}_{thr} = 9.0 \text{ GeV}) \\ pp \rightarrow \Omega^{\text{+}} \Omega^{\text{-}} pp & (\text{E}_{thr} = 12.7 \text{ GeV}) \end{array}$$

Hyperon production via multiple collisions

$$pp \rightarrow K^{+}n\Sigma^{+} \xrightarrow{\Sigma^{+}} \Sigma^{+}\Lambda^{0} \rightarrow \Xi^{0}p$$

$$pp \rightarrow K^{+}p\Lambda^{0} \xrightarrow{\Sigma^{-}} \Sigma^{-}\Xi^{0} \rightarrow \Omega^{-}r$$

$$pp \rightarrow K^{+}p\Lambda^{0} \longrightarrow \Lambda^{0}\Lambda^{0} \rightarrow \Xi^{-}p$$

$$pp \rightarrow K^{+}p\Lambda^{0} \longrightarrow \Sigma^{0}\Xi^{-} \rightarrow \Omega^{-}n$$

$$\begin{array}{cccc} pp \rightarrow K^{+}n\Sigma^{+} & & & \\ pn \rightarrow K^{+}p\Sigma^{-} & & & \\ & & & & \\ pp \rightarrow K^{+}p\Lambda^{0} & & & & \\ \end{array} \xrightarrow{\Sigma^{+}\Sigma^{-}} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array} \xrightarrow{\Sigma^{+}\Sigma^{-}} & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array}$$

New probe of the high-density EOS: subthreshold production of multi-strange hyperons

Idea: Ξ and Ω yield at subthreshold energies ~ multi-step collisions ~ density \rightarrow EOS

G. Graef, J. Steinheimer, F. Li, M. Bleicher, Phys. Rev. C 90, 064909 (2014)

Hyperon production via multiple collisions

$$pp \to K^+ n \Sigma^+ \xrightarrow{} \Sigma^+ \Lambda^0 \to \Xi^0 p$$

$$pn \to K^+ p \Sigma^- \xrightarrow{} \Sigma^- \Xi^0 \to \Omega^- n$$

$$pp \rightarrow K^{+}p\Lambda^{0} \longrightarrow \Lambda^{0}\Lambda^{0} \rightarrow \Xi^{-}p$$

$$pp \rightarrow K^{+}p\Lambda^{0} \longrightarrow \Sigma^{0}\Xi^{-} \rightarrow \Omega^{-}n$$

$$pp \to K^{+}n\Sigma^{+} \xrightarrow{\Sigma^{+}\Sigma^{-}} \Sigma^{+}\Sigma^{-} \to \Xi^{-}p$$

$$pp \to K^{+}p\Lambda^{0} \xrightarrow{\Lambda^{0}\Xi^{-}} \Lambda^{0}\Xi^{-} \to \Omega^{-}n$$

New probe of the high-density EOS: subthreshold production of multi-strange hyperons

Idea: Ξ and Ω yield at subthreshold energies ~ multi-step collisions ~ density \rightarrow EOS

HYPQGSM calculations , K. Gudima et al.

Hyperon production via multiple collisions

$$pp \rightarrow K^{+}n\Sigma^{+} \xrightarrow{} \Sigma^{+}\Lambda^{0} \rightarrow \Xi^{0}p$$

$$pp \rightarrow K^{+}p\Sigma^{-} \xrightarrow{} \Sigma^{-}\Xi^{0} \rightarrow \Omega^{-}r$$

$$pp \rightarrow K^{+}p\Lambda^{0} \longrightarrow \Lambda^{0}\Lambda^{0} \rightarrow \Xi^{-}p$$

$$pp \rightarrow K^{+}p\Lambda^{0} \longrightarrow \Sigma^{0}\Xi^{-} \rightarrow \Omega^{-}r$$

$$\begin{array}{cccc} pp \rightarrow K^{+}n\Sigma^{+} & & & \\ pn \rightarrow K^{+}p\Sigma^{-} & & & \\ pp \rightarrow K^{+}p\Lambda^{0} & & & \\ & & & \\ \end{array} \xrightarrow{} \Sigma^{+}\Sigma^{-} \rightarrow \Xi^{-}p \\ & & & \downarrow \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

Multi-strange hyperons: promising observables for the EOS of symmetric matter at Nuclotron beam energies

Hyperon yield in heavy ion collisions at 4A GeV (BM@N energies): soft EOS (K=240 MeV) / hard EOS (K=350) MeV

PHQMD calculations , J. Aichelin, E. Bratkovskaya, V. Kireyeu et al., priv. comm.

Searching for the onset of deconfinement

Searching the onset of deconfinement with multistrange hyperons

Observation at high energies: Multi-strange hyperons Ξ^- , Ξ^+ , Ω^- , Ω^+ in chemical equilibrium! Why? Hyperon-nucleon cross section too small to reach equilibrium in hadronic phase Explanation: Equilibrium reached by multiple collisions in high density at phase transition (P. Braun-Munzinger, J. Stachel, C. Wetterich, Phys. Lett. B 2004, 596, 61)

Searching the onset of deconfinement with multistrange hyperons

Excitation function of strangeness: $\Xi^{-}(dss), \Xi^{+}(dss), \Omega^{-}(sss), \Omega^{+}(sss)$ \rightarrow chemical equilibration at the phase boundary ?

Particle yields and thermal model fits $n_i = N_i/V = -\frac{T}{V} \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 dp}{\exp[(E_i - \mu_i)/T] \pm 1}$

 $\succ \Xi^{-}$ production by multiple collisions including strangeness exchange

No thermal equilibration in hadronic environment because of small hyperon-nucleon cross sections

Strategy:

measure excitation function of Ξ and Ω production. The beam energy, where thermal equilibration is reach (or disappears), indicates onset of deconfinement

HADES: Ar + KCl 1.76 A GeV G. Agakishiev et al., Eur. Phys. J. A 47 (2011) 21

Hyperons in massive neutron stars?

Weise, arXiv:1905.03955v1, to appear in JPS Conf. Proc (Lambda single particle potential in neutron star matter from Chiral SU(3) EFT interactions)

Measure ΛN , ΛNN , and $\Lambda \Lambda N$ interactions !

Hypernuclei production in heavy-ion collisions

central Pb+Pb/Au+Au collisions

Lines:

Thermal production (UrQMD-hydro hybrid model)

<u>Symbols:</u> Coalescence results (Dubna Cascade Model, DCM-QGSM)

The discovery of new hypernuclei and the precise measurement of their life times will shed light on the AN, ANN, and AAN interactions

J. Steinheimer et al., Phys. Lett. B 714 (2012) 85

BM@N upgrade for Au+Au collisions up to 4.0A GeV

- 4 stations double-sided micro-strip silicon sensors
- 7 full stations Gas-Electron-Multiplier (GEM) chambers
- Forward Hadron Calorimeter
- vacuum beam pipe from Nuclotron to BM@N
- > vacuum target chamber and downstream beam pipe with low material budget

The BM@N Silicon tracking system: Based on double-sided micro-strip sensors

ASIC

STS XYTER v.2.1

Modules are in groups installed on CF trusses with mounting blocks

See talks by Mikhail Merkin, Dmitrii Dementev, Front-end E Mikhail Shitenkov, Anatoly Kolozhvari, Nikita Sukhov,

Assembled modu

Vladimir Elsha, with aluminu Petr Kharlamov on Friday 23.Oct.2020

half-station

STS development in close collaboration with CBM collaboration at FAIR

GEM central tracker for heavy ion runs

- 7 upper GEM 163x45 cm² chambers produced at CERN were integrated into BM@N
- 7 lower GEM 163x39 cm² chambers were assembled, delivered to BM@N and tested

BM@N

Forward Hadron Calorimeter

Determination of:

- Orientation of the reaction plane
- \succ Collision centrality
- FHCAL assembled and installed into BM@N setup
- Cosmic tests are under way

CBM modules MPD modules

See talks by Fedor Guber on Wednesday 21.Oct.2020, and by Nikolay Karpushkin on Thursday 22. Oct. 2020

Team of INR RAS, Troitsk

Physics performance simulations for the hybrid tracking system

 \equiv and $_{\Lambda}H^3$ reconstruction in central Au+Au at 4A GeV (A. Zinchenko)

Generator: PHQMD (V. Kireyeu), 500k events, Au+Au at 4A GeV, b = 0-5 fm

Statistics: $\approx 2 \cdot 10^6 \Lambda$, $\approx 2 \cdot 10^4 \Xi^-$, $\approx 8.4 \cdot 10^4 \Lambda^H^3$ Detectors:STS + GEMs + TOFPID:m² in TOF

See talk by Alexander Zinchenko on Thursday 22.Oct.2020

Beam parameters and setup at different stages of the BM@N experiment

Year	2016	2017 spring	2018 spring	fall 2021	2022	2023
Beam	d(↑)	С	Ar,Kr, C(SRC)	Kr,Xe	up to Au	up to Au
Max.inten sity, Hz	0.5M	0.5M	0.5M	0.5M	0.5M	0.5M
Trigger rate, Hz	5k	5k	10k	10k	10k	50k
Central tracker status	6 GEM half planes	6 GEM half planes	6 GEM half planes + 3 forward Si planes	7 GEM full planes + forward Si planes	7 GEM full planes + forward Si + 2 large STS planes	7 GEM full planes + 4 large STS planes
Experiment al status	technical run	technical run	technical run+physics	physics run	stage1 physics	stage2 physics

CREMLIN P_US

Connecting Russian and European Measures for Large-scale Research Infrastructures

Budget 25 M€ over 4 years: 2020 - 2023 GSI/FAIR and JINR involvement in two Working Packages

WP2: Collaboration with NICA

Develop the instrumentation for NICA/BM@N and FAIR/CBM Engineering and construction of fast detectors, and development of high rate data acquisition chain and software packages for simulation and data analysis Total budget 4.6 M€

Participants: JINR (9 FTE), FAIR (8.5 FTE), U Tübingen (1 FTE), WUT Warsaw (2 FTE), Wigner Budapest (2 FTE), MEPhI (4 FTE) INR Moscow (1 FTE), NPI Prague (2 FTE)

WP7: Joint development of detector technologies

Develop a beyond state of the art CMOS pixel sensors (MAPS) for high-rate Silicon trackers for several particle physics and heavy-ion research communities in Europe and Russia for the potential upgrade of many experimental setups (e.g. at SCT, at NICA, at CERN-colliders), development of neutron detectors, detector school at BINP Total budget 1.75 M€

Participants: JINR (1 FTE), FAIR (1 FTE), DESY (1 FTE), U Frankfurt (1 FTE), IPHC Strasbourg (1 FTE), KINR Kiev (1 FTE), BINP (1 FTE)

Baryonic Matter at Nuclotron (BM@N) Collaboration BM@N

10 Countries, 20 Institutions, 246 participants

- University of Plovdiv, Bulgaria;
- Shanghai Institute of Nuclear and Applied Physics, CFS, China;
- Tsinghua University, Beijing, China;
- Nuclear Physics Institute CAS, Czech Republic;
- CEA, Saclay, France;
- TU Darmstadt & GSI Darmstadt, Germany;
- Tübingen University, Germany;
- Tel Aviv University, Israel;
- Joint Institute for Nuclear Research;
- Institute of Applied Physics, Chisinev, Moldova;
- Warsaw University of Technology, Poland;

• St Petersburg University, Russia;

ΧX

- University of Wroclaw, Poland;
- Institute of Nuclear Research RAS, Moscow, Russia
- NRC Kurchatov Institute, Moscow;
- Institute of Theoretical & Experimental Physics, NRC KI, Moscow, Russia;

- Moscow Engineer and Physics Institute, Russia;
- Skobeltsin Institute of Nuclear Physics, MSU, Russia;
- Moscow Institute of Physics and Technics, Moscow, Russia;
- Massachusetts Institute of Technology, Cambridge, USA.

Summary

- The upgraded BM@N experiment offers the opportunity to explore nuclear matter at neutron star core densities in heavy-ion collisions at energies of up to 3.8A GeV.
- > The research program includes:
 - the high-density equation-of-state
 - the onset of deconfinement
 - the role of hyperons in neutron stars
- Sensitive observables:
 - elliptic flow of charged particles
 - excitation function of multi-strange hyperons
 - hypernuclei
- First measurements with Au beams are expected in 2023.

The new Silicon Tracking System at BM@N will be realized in closed collaboration with groups from the CBM collaboration as a prototype detector for the CBM experiment at FAIR, which is expected to take first beams in 2025.