Physics with charmonia at SPD

Igor Denisenko (on behalf of the SPD working group) iden@jinr.ru

RFBR Grants for NICA 20-23 October 2020

SPD at NICA

SPD at NICA

Primary physics goal – proton spindependent gluon structure.

Complimentary probes:

- charm (D-mesons)
- charmonium (J/ ψ , χ_{cJ} , ψ (2S), η_{c} (?))
- prompt photons

SPD advantages: 4π detector, open spectrometer (possibility to study not only J/ ψ), high statistics

Charmonia production in hadron collisions

At SPD energies **dominated** by gluon-guon fusion \rightarrow sensitive to gluon PDF

Experimentally

- High cross section (200-250 nb at $\sqrt{s}=27$ GeV)
- Clear experimental signature (in case of J/ ψ , χ_c and ψ (2S) can be seen in related modes)

Problems:

- Model dependence
- Feed-down contribution (about 30% of J/ ψ come from decays of χ and ψ (2S)

SPD can

- validate theoretical approaches
- use them to measure or constrain gluon PDF

Some probes with charmonia production:

- f_1^{g} : $\eta_c X$, $\chi_{cJ} X$, $2J/\psi X$, $J/\psi \gamma X$...
- Sivers function (p[↑]p): $J/\psi X$, $\chi_{cJ} X$, $\eta_{c} X$, ...
- Gluon polarization ($p \rightarrow p \rightarrow$): J/ ψ X, ...
- Boer-Mulders function: $\eta_c X$, $\chi_c X$, 2J/ ψX , J/ $\psi \gamma X$, ...

TMD factorization is broken for J/ψ production.

Acta Phys.Polon.B 46 (2015)

Charmonium production is complimentary to prompt photons and open charm.

Theoretical approaches

Approaches to charmonia production:

- Color Singlet Model
- Color Evaporation Model
- NRQCD

Our p_T are mostly below $M_{J/\psi}$:

- collinear factorization is not applicable
- TMD
- Parton Reggeization Approach (PRA)
- k_{T} -factorization approach by Baranov and Lipatov (?)

Observables for validation of models:

- cross-section, p_T-, x_F-dependecies
- polarization(!)
- J/ψ feed down fractions
- asymmetries

$J/\psi \rightarrow \mu^+\mu^-$

Muon/pion separation will be based on **paterns** in RS (standard algorithms + ML).

- ^{m / Fe} Background
 - Decay muons
 - Pions passing significant distance in RS
 - Combination

MB events simulated with Pythia6 and Pythia8. Inclusive J/ψ – Pythia8

For the results below:

- E_{CMS}= 27 GeV
- muon candidate must pass more than 3λ,
- additional cuts on polar angle.

Dimuon mass spectrum

J/ψ : kinematic distributions

- The same shape (shown above) and signal/background ratio are assumed for all bins.
- In some regions acceptance is more important than signal to background ratio.
- Precision for **polarization measurement** is not shown, but can be also expected to be quite high too.

A_{N} for inclusive J/ ψ production

$$\sigma(\phi) \propto 1 + P \cdot A_N \sin(\phi_{\rm pol} - \phi)$$

Assuming P ~ 0.7 and is constant during the run.

8 bins in ϕ . Fits with A + B cos ϕ , A_N = B/(AP), relative uncertainty of A can be neglected.

A_{N} for inclusive J/ ψ production

GPM, Karpishkov, Saleev and Nefedov, 2020:

- d'Alesio and SIDIS1 arXiv:2008.07232
- SIDIS2 private communications

A_{LL} for inclusive J/ ψ production

					_			
Exp.	$\mathrm{beam}/$	$\sqrt{(s)}$	$N_{J/\psi}$	N_{χ_c}	$R\chi_c$	$\frac{\sigma(\chi_{c1})}{\sigma(\chi_{c2})}$	$\sigma(\chi_{c1})$	$\sigma(\chi_{c2})$
-	target	GeV					(nb/n)	(nb/n)
ISR [6]	pp	< 55 >	658	31 ± 11	0.43 ± 0.21			
R702 [7]	$_{\rm pp}$	52.4, 62.2	7 975		$0.15\substack{+0.10\\-0.15}$			
ISR [8]	$_{\rm pp}$	62			0.47(8)			
E610 [9]	pBe	19.4, 21.7	$7 157 \pm 17$	11.8 ± 5.4	0.47(23)	0.24(28)	39(49)	162(81)
E705 [10]	pLi	23.8	6090 ± 90	250 ± 35	0.30(4)	0.09(29)(17)	24(48)(2)	244(83)(16)
E771 [12]	pSi	38.8	11660 ± 139	66	0.76(29)(16)	0.61(24)(4)	488(128)(56)	805(231)(92)
HERA-B [14]	$_{\rm pC,Ti}$	41.6	4420 ± 100	370 ± 74	0.32(6)(4)			
CDF [11],[13]	$par{p}$	1800	${88000 \atop 32642 \pm 185}$	$\begin{cases} 119\pm14\\ 1230\pm72 \end{cases}$	0.297(17)(57)	1.19(33)(14)		

 χ_{cl} production at low energy experiments (table extracts from PRD79,012001 (2009))

 $R_{12} = \frac{\sigma(\chi_{c1})B(\sigma(\chi_{c1}) \to \gamma J\psi)}{\sigma(\chi_{c2})B(\sigma(\chi_{c2}) \to \gamma J\psi)}$

 R_{12}

 $1.06 \pm 0.21_{st} \pm 0.37_{sys}$

 $\begin{array}{l} 0.67 \pm 0.67_{st} \pm 0.23_{sys} \\ 0.98 \pm 0.36_{st} \pm 0.34_{sys} \end{array}$

 $1.02 \pm 0.17_{st} \pm 0.36_{sys}$

22.10

C

Ti

W

Tot

Also HERA-B PRD79,012001 (2009): 15000 χ_{cl} events

Both the feed-down contribution and relative contributions of χ_{c1} and χ_{c2} are important for validation of theoretical models!

We can expect about 0.5M χ_{c1} and χ_{c2} events. We will **not be able to separate these states** but measurements of

- feed-down fractions from χ_{c1} and χ_{c2} ,
- relative contributions of $\chi_{_{c1}}$ and $\chi_{_{c2}}$ can be expected as a function of kinematic variables (p___, x__)

Large background is expected.

- $\psi(2S) \rightarrow \mu^+ \mu^-$ does not look promising
- $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$, $J/\psi \rightarrow \mu^{+}\mu^{-}$ according to preliminary studies:
 - is feasible, a narrow peak in $M(\pi^{+}\pi^{-}\mu^{+}\mu^{-}) M(\mu^{+}\mu^{-})$ can be seen on a significant background
 - about 200K selected events per year are expected.

Ideas are based on the talk by J.P. Lansberg at the "Gluon content of proton and neutron with SPD at NICA"

- Colorless final state
- $\frac{d\sigma}{dP_T^{\psi\psi}} \propto F_1 \mathcal{C}[f_1^g f_1^g] + F_2 \mathcal{C}[w_2 \times h_1^{\perp g} h_1^{\perp g}]$
- SPD can study low $p_T J/\psi J/\psi$ production (complementary to ATLAS and CMS)
- DPS and SPS have different feed-down fractions. Search for J/ $\psi\psi$ (2S) and J/ $\psi\chi_{c1}$
- No x dependence yet for f_1^{g} . SPD can contribute?

But

- NA3: the cross-section of pN \rightarrow J/ ψ J/ ψ X is 27±10 pb at \sqrt{s} ~27 GeV
- Can expect 50-100 events with both $\mu^+\mu^-$ and e^+e^- modes

- Charmonia production is a powerful probe of polarized and unpolarized proton gluon structure.
- In addition, the SPD experiment can provide important and precise measurements to validate theoretical approaches to charmonia production (like J/ ψ polarization, feed-down fractions and relative production strength of χ_{c1} and χ_{c2}).
- SPD can be expected to provide the most precise measurements of J/ ψ A_N and A_{LL} in the wide kinematic range at low energies, constraining (hopefully probing) gluon Sivers function and gluon polarized gluon PDF.
- It will be possible to have measurements with χ_{cJ} and $\psi(2S)$, the precision is being estimated. Feasibility of any physics with η_c is unclear. Other probes like J/ ψDD , 2J/ ψ or $\gamma J/\psi$ might be of some interest.
- SPD physics program with charmonia states is rich and promising.