MiniSPD testing facility

Motivation

- Getting real data from cosmic rays
- Using prototype SPD detectors for track reconstruction
- MiniSPD simulation and comparison with the real data
- Measurement of detector characteristics
- Checking the stability of the detector and stand components over a long period of operation
- For almost 3 years (2018-2021), there will be no relativistic beam at LHEP, and the space stand being created allows research work with real detectors

miniSPD setup

Functional structure of the stand

DAQ

The DAQ system from the BM&N experiment is used as a basis (ADS,TDC,TQDS,U40VE etc.)

Trigger

- 2 Scintillators ((SiPm 4ch)
- 1 Scintillator (Pmt 1ch)
- TQDC

- 16 channels, 50 Ohm
- TDC: time-stamping, 25ps bin size
- Amplitude (charge) measurement: 10/14 bit, 80 MS/s ADC
- On-board trigger matching logic

BM@N Silicon detector module design

Silicon detector

Сторона наклонных стрипов

Сторона параллельных стрипов

Silicon detector data monitoring

Events reconstruction

- a) Hits plots in BM@N Simodules;
- b) Reconstructed track in muon stand (based on bmnroot fromouverk):
 - framework);
- c) BM@N Silicon modules;

STRAW

6mm

Straw winding. Two film strips are wound around the mandrel

2 station from the NA64 experiment
• straw tube with 6mm diameter, in the centre a 30mrm diameter gold-plated tungsten wire
• Length straw 20 cm
• Precision measurement of 0.2 mm

STRAW data monitoring

GEM

GEM data monitoring

ECAL

ECAL MIP spectra in corresponding cells (top view)

ECAL

ECAL module (110x110 mm²)design Module consist of 4 cells 55x55x440 mm³: 220 Layers Lead and Scintillator 1.5 mm – Scintilator 0.3 mm - Lead

4 SiPm

Alignment

Gas supply system

Slow control

Geant4

The old version of the miniSPD model stand is implemented using the Geant4 package for a 100 MeV, 1 GeV,and 10 GeV μ - beam. The model consists of 2 scintillators, 3 Si detectors, 1 straw station

The new model consists of 3 scintillators, 3 Si detectors, 2 straw stations, 2 GEM detectors, ECAL, Pb-filter

Conclusions:

- First version of cosmic muon stand for testing straw detectors based on external BM@N Si detector tracking system – designed and produced
- Software for track reconstruction is developed based on BMNRoot framework
- BM@N Silicon detector allow to detect coordinate and amplitude of m.i.ps signals
- First straw detector testing results (Time and R-T distributions) are obtained at different pressure

Plans

- Develop software for alignment
- Add new tracking detectors to increase measurement accuracy
- Add elements of the muon range system from SPD
- Add calorimeter to scan trigger events by energy
- Collect more data to build R-T for each straw detector
- Develop software for track reconstruction based on SPDRoot
- Update online-monitoring programs
- Develop DAQ system
- Use Garfield to simulate a straw tube signal