

Charmonium-like states at COMPASS Andrei Gridin (DLNP)

121st session of the Scientific Council 24 February 2017

Quark model

 1964 – Gell-Mann and Zweig proposed that all hadrons are built from quarks.

Volume 8, number 3

2 groups of hadrons:

A SCHEMATIC MODEL OF BARYONS AND MESONS *

P. YSICS LETTERS

M. GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

We then refer to the members $u^{\frac{2}{3}}$, $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (q q q), $(q q q q \bar{q})$, etc., while mesons are made out of $(q \bar{q})$, $(q q \bar{q} \bar{q})$, etc. It is assuming that the lowest baryon configuration (q q q) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q \bar{q})$ similarly gives just 1 and 8.

1 February 1964

1st wave

• First wave of multiquark particles: ~1990th – 2000th

Several experiments in the mid-2000s reported discoveries of pentaquark states. CLAS, Belle, BaBar, HERA-B and COMPASS have closed these observations.

• Second wave: 2003 – now – observation of X(3872) by Belle.

2nd wave

Long and rich history:

- X(3872) observed by Belle
 - **Z**_b**±(10610)** (Belle) − first charged bottomium-like state.
 - Z_{c} [±](3900) and Z_{c} [±](4020) (BESIII) – first charged charmonium-like states

P_c+**(4380)** and P_c+**(4450)** pentaquarks (LHCb)

Production of charmonium-like states

Charmonium-like states are observed in: direct production in e⁺e⁻ collisions; RFI I direct production in hadron collisions; B decays; BELLE y*y* collisions; but haven't searched in photoproduction.

The COMPASS experiment

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

COMPASS

LHC -

\$

۲

COMPASS setup

Year	Target	Beam particle	Beam momentum, GeV/c
2002	6 LiD	μ^+	160
2003	6 LiD	μ^+	160
2004	6 LiD	μ^+	160
2006	$^{6}\mathrm{LiD}$	μ^+	160
2007	$ m NH_3$	μ^+	160
2008	Liquid H_2	π^-, K^-	190
2009	Liquid H_2 , Ni, W, Pb	π^-, K^-, μ^-	190
2010	NH_3	μ^+	160
2011	$ m NH_3$	μ^+	200
2012	Ni, C, W, Pb	π^-, K^-, μ^-	190
2014	NH_3 , W, Al	π^{-}	190
2015	NH_3 , W, Al	π^{-}	190
2016	Liquid H ₂	μ^{\pm}	160
2017	Liquid H_2	μ^{\pm}	160 (planned)

Physics program:

 → nucleon spin structure (gluon and quark helicities, SIDIS)

2011 COMPASS setup → *Primakoff reactions*

- ight meson and baryon spectroscopy
- → GPDs (DVCS, exclusive lepton production, SIDIS)
- → polarized Drell-Yan
- Photoproduction of XYZ states (new!)

Photo(lepto)production mechanism

 COMPASS already has 50k J/psi via photoproduction (huge statistics)

Various experiments – GlueX and CLAS12 use photon beam for photoproduciton. COMPASS can produce γ^* which interacts with the target. The produced XYZ state decays to J/ ψ and other particles which could be detected by COMPASS.

The spectroscopy of exotic charmonia was introduced to COMPASS by JINR in 2013

Z_{c}^{\pm} (3900): general information

X(3900)

 $I^{G}(J^{PC}) = 1^{+}(1^{+})$

Mass m = 3886.6 \pm 2.4 MeV (S = 1.6) Full width $\Gamma =$ 28.1 \pm 2.6 MeV

X(3900) DECAY MODES	Fraction (Γ_i/Γ)
$J/\psi \pi$	seen
$h_c \pi^{\pm}$	not seen
$\eta_c \pi^+ \pi^-$	not seen
$(D\overline{D}^*)^{\pm}$	seen
$D^0 D^{*-} + \text{c.c.}$	seen
$D^- D^{*0} + c.c.$	seen
$\omega \pi^{\pm}$	not seen
$J/\psi \eta$	not seen
$D^+ D^{*-} + c.c$	seen
$D^0 \overline{D}^{*0} + c.c$	seen

Tetraquark $c\overline{c}u\overline{d}$ *state* - the most suitable explanation of Z^{\pm}_{c} (3900).

A lot of other explanations exist: kinematical effect, Didiquark, DD* molecule...

Exclusive photoproduction of $Z^{\pm}(3900)$ and $Z^{\pm}(4200)$ J/ψ $\mu^{+}N \rightarrow \mu^{+} Z^{\pm}(3900)N' \rightarrow \mu^{+}J/\psi\pi^{\pm}N'$ Z_c(3900) J/ψ^* Model for $Z^{\pm}_{c}(3900)$ photoproduction: π^+ Phys. Rev. D88, 114009 (2013) 0.12 $BR(Z_c^{\pm}(3900) \to J/\psi\pi^{\pm}) \times \sigma_{\gamma \ N \to Z_c^{\pm}(3900) \ N} \Big|_{\langle \sqrt{s_{\gamma N}} \rangle = 13.8 \ GeV} < 52 \text{ pb}$ =0.5 Ge 0.10 $\sigma_{\nu N} \rightarrow z_{cN}$ =0.6 GeV Λ =0.7 GeV 0.08 $\Gamma_{J/\psi\pi} < 2.4 \ MeV/c^2, \ CL = 90\% \ for$ (qn) -0.06 $\Gamma_{tot} = 46 \ MeV/c^2 \ and \ \Lambda_{\pi} = 0.6 \ GeV.$ COMPASS 0.04 0.02 PLB 742(2015) 330-334 0.00 0 10 20 30 40 50 **Referenced in PDG 2016** \sqrt{s} (GeV) ounts/0.02 GeV/c The same analysis for $Z_{c}^{\pm}(4200)$:

10

Phys. Rev. D 92, 094017 (2015)

 $BR(Z_c(4200) \rightarrow J/\psi\pi) \times \sigma_{\gamma N \rightarrow Z_c(4200)N} < 340 \text{ pb.}$

Photoproduction of X(3872)

X(3872)

 $I^{G}(J^{PC}) = 0^{+}(1^{++})$

Mass $m = 3871.69 \pm 0.17$ MeV $m_{X(3872)} - m_{J/\psi} = 775 \pm 4$ MeV $m_{X(3872)} - m_{\psi(2S)}$ Full width $\Gamma < 1.2$ MeV, CL = 90%

X(3872) DECAY MODES	Fraction (Γ_i/Γ)	
$\pi^+\pi^- J/\psi(1S)$	> 2.6 %	$\Gamma(\omega J/\psi(1S))/\Gamma(\pi^+\pi^- J/\psi(1S))$
$\omega J/\psi(1S)$	> 1.9 %	VALUE
$D^0 \overline{D}{}^0 \pi^0$	>32 %	0.8 ± 0.3
$\overline{D}^{*0} D^0$	>24 %	
$\gamma J/\psi$	$> 6 \times 10^{-3}$	
$\gamma \psi$ (25)	> 3.0 %	
$\pi^+\pi^-\eta_c(1S)$	not seen	
р <u></u>	not seen	

S.Takeuchi, K.Shimizu and M.Takizawa, PTEP2014(2014)123D01

We have argued that the X(3872) is a hybrid state of the $c\overline{c}$ and the two-meson molecule: a superposition of the $D^0\overline{D}^{*0}$,

A lot of theoretical models have been developed

Photoproduction of X(3872) $\mu^+N \rightarrow \mu^+X(3872)\pi^{\pm}N' \rightarrow \mu^+(J/\psi\pi^+\pi^-)\pi^{\pm}N'$

Possibility of X(3872) photoproduction proposed in Phys.Lett.B605:306-310,2005, arXiv:hep-ph/0410264

Used muon data of 2003-2010 $N_{\psi(2S)} = 16.1\pm5.2$ $N_{\chi(3872)} = 13.9\pm4.9$ $M_{\psi(2S)} = 3680\pm8$ MeV (nominal 3686.1) $M_{\chi(3872)} = 3860\pm8$ MeV (nominal 3872) $\sigma_{M} = 20.6\pm6.1$ MeV

Possible tasks

Search for photoproduction of other charmonium-like states in the collected and future data.

Setup: new possibilities

- Liquid H₂ target: possibility to detect gamma.
- System of 3 ECALs: much better selection of exclusive events, better acceptance.
- Recoil proton detector CAMERA: improves quality of exclusive events selection.
- New set of triggers: wider kinematic range covered.

Exclusive photoproduction of pentaquarks $P_c(4380)$ and $P_c(4450)$ in s-channel

The exotic pentaquark states $P_c^+(4380)$ and $P_c^+(4450)$ have been observed by the LHCb collaboration in the J/ ψ p mass spectrum in the decay $\Lambda_b^0 \rightarrow J/\psi p K^-$

Phys. Rev. Lett. 115, 072001 (2015)

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP-2015-153 LHCb-PAPER-2015-029 July 13, 2015

Observation of $J/\psi p$ resonances consistent with pentaquark states in $\Lambda_b^0 \to J/\psi K^- p$ decays

For observation of P_c COMPASS needs extended kinematic range. In future COMPASS might cover the needed kinematic range (new triggers).

Conclusions

- Study of charmonium-like states is important for understanding of properties of hadronic matter.
- Photoproduction of exotic charmonia off a nuclear target is a new promising way to test the nature of these states.
- The COMPASS experiment performs groundbreaking studies of photoproduction of exotic XYZ states using DIS data collected in 2002-2011:
 - $Z_{c}^{\pm}(3900)$ published result
 - X(3872) paper is under preparation
 - $XYZ {\rightarrow \varphi J/\psi}$ ongoing analysis
- New data and new possibilities are expected with improved setup configuration.
- The spectroscopy of exotic charmonia was introduced to COMPASS by JINR.