

04.08.2020

Global polarization within the 3FD model

Yuri B. Ivanov

BLTP JINR/MEPhI/Kurchatov Institute

"Vorticity and Polarization in Heavy-Ion Collisions", 04.08.2020, JINR VBLHEP

04.08.2020

Do the global polarization, angular momentum and flow correlate?

Important: global polarization is measured in midrapidity region $|\eta|$ < 1.

Thermodynamic approach to Λ **polarization**

[Polarization](#page-0-0)

04.08.2020

Relativistic Thermal Vorticity

$$
\varpi_{\mu\nu}=\frac{1}{2}(\partial_{\nu}\hat{\beta}_{\mu}-\partial_{\mu}\hat{\beta}_{\nu}),
$$

where $\hat{\beta}_\mu = \hbar \beta_\mu$ and $\beta_\mu = u_\nu / T$ with $T =$ the local temperature.

 ϖ is related to **mean spin vector,** $\Pi^{\mu}(p)$, **of a spin 1/2 particle** in a relativistic fluid [F. Becattini, et al., Annals Phys. **³³⁸**, 32 (2013)]

$$
\Pi^{\mu}(p) = \frac{1}{8m} \frac{\int_{\Sigma} d\Sigma_{\lambda} p^{\lambda} n_{F} (1 - n_{F}) p_{\sigma} \epsilon^{\mu\nu\rho\sigma} \partial_{\nu} \hat{\beta}_{\rho}}{\int_{\Sigma} \Sigma_{\lambda} p^{\lambda} n_{F}},
$$

 n_F = Fermi-Dirac distribution function. integration over the freeze-out hypersurface $Σ$.

"'**an educated ansatz for the Wigner function** of the Dirac field"'

3FD Equations of Motion

Total energy-momentum conservation: $\partial_\mu (T_p^{\mu\nu} + T_t^{\mu\nu} + T_f^{\mu\nu})$ $f^{\mu\nu}_{f}$) = 0

04.08.2020

Baryon current:

 $J^\mu_\alpha = \eta_\alpha \, \mu^\mu_\alpha$ n_{α} = baryon density of α -fluid u^{μ}_{α} = 4-velocity of α -fluid

Energy-momentum tensor:

 $T^{\mu\nu}_\alpha = (\varepsilon_\alpha + P_\alpha)u^\mu_\alpha u^\nu_\alpha - g_{\mu\nu}P_\alpha$ ε_{α} = energy density P_{α} = pressure

+ Equation of state:

 $P = P(n, \varepsilon)$

04.08.2020

Equation of State

crossover EoS and 1st-order-phase-transition (1PT) EoS [Khvorostukhin, Skokov, Redlich, Toneev, (2006)]

Friction

calculated in hadronic phase (Satarov, SJNP 1990) fitted to reproduce the baryon stopping in QGP phase

Freeze-out

Freeze-out energy density ε_{trz} = 0.4 GeV/fm³

All parameters of the 3FD model are exactly the same as in calculations of other (bulk and flow) observables

[Polarization](#page-0-0) 04.08.2020

Estimation of Polarization

- based on mean vorticity $\langle \varpi_{\mu\nu} \rangle$ and isochronous freeze-out.
	- $\bullet \langle \varpi_{\mu\nu} \rangle$ averaged over "midrapidity region".
	- Calculation over central region $($ = "midrapidity region") rather than over true midrapidity region
	- Therefore, it is an estimation rather than calculation.
	- Refined approach as comrared to PRC 100 (2019) 014908

freeze-out in this central slab

"Midrapidity" Polarization

[Polarization](#page-0-0)

04.08.2020

Global polarization correlates with neither the angular momentum accumulated in the central region nor with directed and elliptic flow.

Correlation between the angular momentum and directed flow

Polarization due to axial vortical effect

[Polarization](#page-0-0) Relativistic Kinematic Vorticity = $\omega_{\mu\nu} = \frac{1}{2}$ $\frac{1}{2}(\partial_\nu u_\mu - \partial_\mu u_\nu)$

04.08.2020 u_{μ} = collective local 4-velocity of the matter,

is relevant to the **axial vortical effect**

[A. Vilenkin, PRD 20, 1807 (1979); 21, 2260 (1980).]

strange axial current =
$$
J_{5s}^{\nu} = N_c \int d^3x \left(\frac{\mu_s^2}{2\pi^2} + \kappa \frac{T^2}{6} \right) e^{\nu \alpha \beta \gamma} u_{\alpha} \partial_{\beta} u_{\gamma}
$$

\n d
\n $\frac{d}{dt}$
\n $\frac{d}{dt}$

 $p_y = \Lambda$'s momentum transverse to reaction plane

mlans M. Baznat, K. Gudima, A. Sorin and O. Teryaev,

[5] N. Banerjee, J. Bhattacharya, S. Bhattacharyya, PRC 97, 041902 (2018) external parameters is performed. This however does not imply the anomaloud non-conservation non-conservation

Polarization due to AVE

[Polarization](#page-0-0) AVE explains difference between $P_Λ$ and $P_Λ$ AVE *P* exceeds thermodynamic *P* at low collision energies

 $\sqrt{s_{NN}}$ [GeV]

04.08.2020

- **Global** Λ **polarization correlates with neither the angular momentum accumulated in the central region nor with** v_1 **and** v_2 **flow**
- **Correlation between the angular momentum and directed flow**
- **AVE well describes STAR data on global polarization and explains difference between** $P_Λ$ and $P_Λ$
- AVE *P* essentially exceeds thermodynamic *P* at low collision energies