

04.08.2020

Global polarization within the 3FD model

Yuri B. Ivanov

BLTP JINR/MEPhI/Kurchatov Institute

"Vorticity and Polarization in Heavy-Ion Collisions", 04.08.2020, JINR VBLHEP

04.08.2020

Do the global polarization, angular momentum and flow correlate? Important: global polarization is measured in midrapidity

Important: global polarization is measured in midrapidity region $|\eta| < 1$.

Thermodynamic approach to A polarization

Polarization

04.08.2020

Relativistic Thermal Vorticity

$$arpi_{\mu
u}=rac{1}{2}(\partial_{
u}\hat{eta}_{\mu}-\partial_{\mu}\hat{eta}_{
u}),$$

where $\hat{\beta}_{\mu} = \hbar \beta_{\mu}$ and $\beta_{\mu} = u_{\nu}/T$ with T = the local temperature.

 ϖ is related to mean spin vector, $\Pi^{\mu}(p)$, of a spin 1/2 particle in a relativistic fluid [F. Becattini, et al., Annals Phys. **338**, 32 (2013)]

$$\Pi^{\mu}(p) = rac{1}{8m} rac{\int_{\Sigma} \mathrm{d}\Sigma_{\lambda} p^{\lambda} n_F (1-n_F) \, p_{\sigma} \epsilon^{\mu
u
ho \sigma} \partial_{
u} \hat{\beta}_{
ho}}{\int_{\Sigma} \Sigma_{\lambda} p^{\lambda} \, n_F},$$

 n_F = Fermi-Dirac distribution function, integration over the freeze-out hypersurface Σ .

"'an educated ansatz for the Wigner function of the Dirac field"'

3FD Equations of Motion

Total energy-momentum conservation: $\partial_{\mu}(T_{\rho}^{\mu\nu} + T_{f}^{\mu\nu} + T_{f}^{\mu\nu}) = 0$

04.08.2020

Baryon current:

 $\begin{aligned} \mathbf{J}^{\mu}_{\alpha} &= \mathbf{n}_{\alpha} \mathbf{u}^{\mu}_{\alpha} \\ \mathbf{n}_{\alpha} &= \text{baryon density of } \alpha \text{-fluid} \\ \mathbf{u}^{\mu}_{\alpha} &= 4\text{-velocity of } \alpha \text{-fluid} \end{aligned}$

Energy-momentum tensor:

 $T^{\mu\nu}_{\alpha} = (\varepsilon_{\alpha} + P_{\alpha})u^{\mu}_{\alpha}u^{\nu}_{\alpha} - g_{\mu\nu}P_{\alpha}$ ε_{α} = energy density P_{α} = pressure

+ Equation of state:

 $P = P(n, \varepsilon)$

04.08.2020

• Equation of State crossover EoS and 1st-order-phase-transition (1PT) EoS [Khvorostukhin, Skokov, Redlich, Toneev, (2006)]

Friction

calculated in hadronic phase (Satarov, SJNP 1990) fitted to reproduce the baryon stopping in QGP phase

Freeze-out

Freeze-out energy density $\varepsilon_{frz} = 0.4 \text{ GeV/fm}^3$

All parameters of the 3FD model are exactly the same as in calculations of other (bulk and flow) observables

04 08 2020

Estimation of Polarization

- based on mean vorticity $\langle \varpi_{\mu\nu} \rangle$ and isochronous freeze-out.
 - $\langle \varpi_{\mu\nu} \rangle$ averaged over "midrapidity region".
 - Calculation over central region (= "midrapidity region") rather than over true midrapidity region
 - Therefore, it is an estimation rather than calculation.
 - Refined approach as comrared to PRC 100 (2019) 014908

freeze-out in this central slab

"Midrapidity" Polarization

Polarization

Ivanov, Toneev, Soldatov, PRC 100 (2019)

04.08.2020

Global polarization correlates with neither the angular momentum accumulated in the central region nor with directed and elliptic flow.

Correlation between the angular momentum and directed flow

Polarization due to axial vortical effect

Polarization Relativistic Kinematic Vorticity = $\omega_{\mu\nu} = \frac{1}{2} (\partial_{\nu} u_{\mu} - \partial_{\mu} u_{\nu})$

04.08.2020

 u_{μ} = collective local 4-velocity of the matter,

is relevant to the axial vortical effect

[A. Vilenkin, PRD 20, 1807 (1979); 21, 2260 (1980).]

 κ = a variable parameter,

 $p_y = \Lambda$'s momentum transverse to reaction plane

M. Baznat, K. Gudima, A. Sorin and O. Teryaev,

PRC 97, 041902 (2018)

Polarization due to AVE

AVE explains difference between P_{Λ} and $P_{ar{\Lambda}}$

AVE *P* exceeds thermodynamic *P* at low collision energies

40

04.08.2020

- Global A polarization correlates with neither the angular momentum accumulated in the central region nor with v₁ and v₂ flow
- Correlation between the angular momentum and directed flow
- AVE well describes STAR data on global polarization and explains difference between P_{Λ} and $P_{\bar{\Lambda}}$
- AVE *P* essentially exceeds thermodynamic *P* at low collision energies