

Development of L0 trigger for study of AA- collisions in BM@N/Nuclotron and MPD/NICA experiments

D. N. Bogoslovski, V. Yu. Rogov, S. V. Sergeev, V. V. Tikhomirov, V. I. Yurevich

Joint Institute for Nuclear Research, Dubna

Aim

- fast triggering of nucleus–nucleus collisions with high efficiency
- > generation of the start signal T0 for TOF detectors with $\sigma_t \le 50$ ps

Requirements

operation in strong magnetic fields of MPD (B = 0.5 T) and BM@N ($B \le 0.9$ T)

Concepts of LO interaction trigger system for the fixed target and collider experiments are completely different

- Fixed target mode the trigger and T0 pulse are produced with a system of low mass beam detectors and target area detectors
- Collider mode the trigger and T0 are produced with two fast modular Cherenkov detectors

4

Recent progress in picosecond timing

- New photodetectors
- MCP-PMTs
- SiPMs
- Large TOF detectors based on RPCs

- > New readout electronics
- TDCs (HPTDC, ...)
- GHz digitizers

Contributions to time resolution of detector with MCP-PMT

- Timing of Cherenkov / scintillation process
- Time spread of photon arrival on photocathode
- ✓ Transition time spread
- ✓ Photoelectron statistics
- ✓ FEE and method of signal processing
- Cables and connectors
- ✓ Readout electronics
- ✓ Method of data processing

The task is to minimize these contributions as much as possible

BM@N

General scheme of BM@N setup

Interaction trigger 2017

BM@N

Trigger detector setup 2019

Beam detector	PMT	Beam ion	Scintillator	Comments	
BC1	XP2020	C, Ar Kr, Xe Au	BC-418 100×100×0.5 mm BC-418 100×100×0.5 mm BC-400B 100×100×0.25 mm	In vacuum pipe	
VC	XP2020		BC-418 130diam.×3 mm, hole 30-mm diam.	In vacuum pipe	
BC2(T0)	MCP-PMT PP2365E	C, Ar Kr, Xe Au	BC-418 10diam.×0.8 mm BC-418 10diam.×0.5 mm BC-400B 10diam.×0.15 mm		
BC3	R2490-07	C, Ar Kr, Xe Au	BC-418 30×30×1 mm BC-418 30×30×0.5 mm BC-400B 30×30×0.15 mm		

BM@N

Trigger detectors:

BC1, BC2, BC3 – beam counters VC – veto counter BD – barrel detector (40 channels) SiD – silicon detector (60 channels) CD – modular Cherenkov detector (FFD modules)

T0 detectors:

BC2 – runs with beam < 10⁶ ion/spill CD – runs with beam > 10⁶ ion/spill

Trigger Rates:

Valid beam: 10^5 s^{-1} Min. bias: $3 \times 10^3 \text{ s}^{-1}$ for 3% target Central coll.: $\sim 3 \times 10^2 \text{ s}^{-1}$

Interaction trigger logic

BM@N

Main Trigger Detectors

Beam detectors

BM@N

T0 (BC2)

Two beam detectors were equipped with this photodetector and were used in Run 2017 with C ion beam:

- 1. Cherenkov counter with 4- mm quartz (46° to beam axis)
- 2. Beam counter with 0.8- mm scintillator (45° to beam axis)

Typical pulses of BC2 measured with CAEN digitizer

Event selection by Min. Bias trigger

Test of Min. Bias trigger with C-ion beam and prototypes of BC2 and BC3 with 3-mm scintillators in 2016

A scheme of installed FFD

The Fast Forward Detector (FFD) provides fast Vertex trigger and T0 pulse for TOF detector

MPD

The delay of charged particle arrival in FFD

Energy spectra of the photons emitted into the FFD

MPD

Fast interaction trigger by fast Vertex FFD_E - **FFD**_W – by fast on-line processing of FFD pulses Requirement: uncertainty of interaction point position $\Delta z < 3$ cm

Start signal T0 for TOF detector – by off-line analysis of FFD pulses Requirement: $\sigma_{T0} < 50$ ps for time resolution of TOF system $\sigma_t = (\sigma_{T0}^2 + \sigma_{TOF}^2)^{1/2} < 100$ ps

Interaction trigger of MPD

Concept of FFD

Design of FFD

FFD module

MPD Planacon MCP-PMT XP85012/A1-Q (S) with photocathode of $53 \times 53 \text{ mm}^2$ (81% of front surface)

Realistic chain of cables and electronics.

MPD

Experiment	Detector	Active area* (cm²)	Number of channels*	Photodetector	Operation in MF	Time resolution** (ps)
STAR/RHIC	VPD scintillation	215	19	Hamamatsu mesh dynode PMTs R5946	Yes	150
PHENIX/RHIC	BBC Cherenkov	314	64	Hamamatsu mesh dynode PMTs R3432	Yes	52
PHOBOS/RHIC	Cherenkov counters	79	16	Hamamatsu PMTs R1924	No	60
ALICE/LHC	T0 Cherenkov	38	12	Electron mesh dynode PMTs FEU187 Upgrade project: Photonis MCP-PMTs	Yes	28
MPD/NICA	FFD Cherenkov	625	80	Photonis MCP-PMTs XP85012/A1	Yes	~40

* sub-detector

** time resolution of single channel (sigma)

- For BM@N experiment, the detectors and electronics of fast interaction trigger and
 T0 have been developed and tested in runs with deuterons and carbon ions.
- For MPD experiment, the performance of Fast Forward Detector has been studied with MC simulation and in test measurements with FFD prototypes.
- For both experiments, all requirements to the fast interaction trigger and
 T0 pulse have been achieved.