

# **MultiPurpose Detector – MPD**



#### V.A. Babkin on behalf of the MPD/NICA collaboration

## The problem of studying hot and dense baryonic matter



ФBЭ





#### MPD/NICA heavy ion programm:

experimental programs

- Main properties, EOS particle yields & spectra, ratios, femtoscopy
- In-Medium modification of hadron properties onset of low-mass dilepton enhancement
- **Deconfinement (chiral) phase transition at high**  $\rho_B$  enhanced strangeness production
- QCD Critical Point event-by-event fluctuations & correlations
- Y-N (hyperon-Nucleon) interactions in dense nuclear matter hypernuclei

To study properties of phase diagram it is important:

- to have possibilities of fine scan on collision energy;
- to have variety of beam nucleus.

28.09.2017



Present and future heavy ion collider and fixed target experiments







#### First stage (2019-2020): |η|<1.3

□ Particle yields and spectra (p,K,p,clusters,L, X,W)

□ Event-by-event fluctuations

 $\Box$  Femtoscopy involving  $\pi$ , K, p,  $\Lambda$ 

□ Collective flow for identified hadron species

□ Electromagnetic probes (electrons, gammas)

#### Second stage (2023): |η|<2 + IT

- Total particle multiplicities
- □ Asymmetries study (better reaction plane determination)
- □ Di-Lepton precise study (ECal expansion)
- □ Exotics (soft photons, hypernuclei)

#### 28.09.2017



## **Superconducting solenoid of the MPD**



#### B<sub>0</sub>=0.5 T (I=1.79 kA); SC cable: NbTi/Cu (T=4.5 K) weight ~ 900 t; L=8970 mm, Ø6583 mm





High level magnetic field homogeneity in the TPC region  $\sim 3x10^{\text{-4}}$ 

#### **ASG superconductors**

(Genova, Italy):

- Cold Mass + Cryostat
- Vacuum System
- Trim Coils
- Control System
- General responsibility VHM (Vitkovice, Czech Republic)
- Yoke production
- SPETSMASH (Kazan, Russia)
  - Forging (support rings, poles, plates)



### **Time Projection Chamber (TPC)**

R = 1400 mm, L = 3400 m, N<sub>pads</sub> = 95232  $\sigma_x, \sigma_y, \sigma_z \sim 0.6$  mm, 1 mm, 2 mm  $\delta p/p < 2\%, dE/dX \sim 8\%$ 





#### **Time-of-Flight system (TOF)**



Detailed description of the TOF in the talk of A. Dmitriev "Control and readout electronics of the time-of-flight system..."

LНЕР ЛФВЭ

28.09.2017

### **Fast Forward Detector (FFD)**

#### 160 channels (two arms of 40 modules), $\sigma_t$ <50 ps



## **Forward Hadron Calorimeter (FHCal)**



28.09.2017

**Electromagnetic Calorimeter (ECal)** 

#### "Shashlyk" type calorimeter: 43000 ECAL modules Pb(0.3mm)+Scint(1.5 mm) (4x4 cm<sup>2</sup>) Readout: WLS fibers + MAPD



28.09.2017



#### **Event generators**

✓ UrQMD 2.3
✓ LA QGSM
✓ SHIELD
✓ HSD
✓ UrQMD 3.4
✓ 3FD + particlization



- inherits basic properties from FairRoot (developed at GSI), C++ classes;
- extended set of event generators for heavy ion collisions;
- detector composition and geometry; particle propagation by GEANT3/4;
- *advanced detector response functions, realistic tracking and PID included.*

LHEP ЛФВЭ

### **Physical performance of the MPD**

Production of multi-strange hyperons to study the properties of the strongly interacting system and signal for QGP





Momentum anisotropy (elliptic flow) originates from initial spatial anisotropy.  $v_2$  depends on matter properties and EOS.



Dileptons - good probes to indicate medium modifications of spectral functions due to chiral symmetry restoration in A+A collisions; effect is proportional to baryon density



27.09.2017



## **Conclusions**

- Significant progress achieved in the MPD project realization
- MPD TDR preparation is being finalized
- Successful preparation for mass-production of MPD elements (TPC, TOF, FFD, FHCAL)
- The MPD is to be ready for physical data taking at 2021



## **Thank you for the attention!**



27.09.2017