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Introduction



Situation|al] awareness

» The perception of the elements in the environment
within a volume of time and space

» The comprehension of their meaning

» The projection of their status in the near future

Mica R. Endsley: Toward a Theory of Situation Awareness in Dynamic Systems.
Human Factors Journal, 1995, 37(1), 32-64
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Situation|al] awareness (cont.

Model of situation awareness in dynamic decision making System capability
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Mica R. Endsley: Toward a Theory of Situation Awareness in Dynamic Systems.
Human Factors Journal, 1995, 37(1), 32-64
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OODA loop (decision cycle)

Decision-making occurs in a recurring
cycle of observe-orient-decide-act

by John Boyd (US Air Force)

‘Situation awareness
Ensembles of automatic control leads to

distributed control, adaptive ensembles Observe BOnieht
support cooperation, and ensembles of

autonomous systems are becoming
collaborative.
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Integration Definition for Function Modeling (IDEF0)
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Processing environment



ATLAS Workflow Management
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ATLAS Production System 992

For details see slides M.Borodin. The ATLAS Production System Evolution

Database Engine for Tasks (DEfT)
formulate the tasks, chains of tasks and task
groups (i.e., production request), complete with
all necessary parameters

Job Execution and Definition Interface (JEDI)
task-level workload management (i.e., brokerage
and execution), dynamic job definition and
execution (for resources usage optimization)

JEDI/PanDA server
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Controlled parameters and processes



ProdSys?2 / causes of failure

Description Example

Overload in the system

Stuck handling processes

Malfunctioning of
computing resources

Failure of data processing

Components
misconfiguration

Improper
operational processes

Malicious activities
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ProdSys?2 / controlled parameters

- Duration of task (chain of tasks) processing

- Forecast and control Time-To-Complete

- Rate of task submission over processing
- Number of failures or/and errors occurred

- Metrics of resources utilization (with optimal values)
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Predictive analytics



Predictive analytics

Advanced

Analytics

Statistical analysis

Machine learning
Predictive modeling

Data visualization
Reporting
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Control flow



Proposed approach for controlling

Levels of controlled states:

- Thresholds (based on statistical analysis)
Initial predictions (based on descriptive data)
Dynamic predictions (based on static and dynamic data)

Output: cumulative parameter (e.g., context status weight)
excesses on any stage / level - increase the value
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Structure overview

DEfT/JEDI database
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Task Time-To-Complete (TTC) Estimation



Task TTC / threshold definition

MC tasks duration distribution per month (for the last 180 days)
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ML technology and methods

v

Spark.MLIib / Ensemble methods (ensemble of decision trees)

Gradient-Boosted Trees regression method

Random Forests regression method

v

Types of prediction approaches

“Cold” prediction
based on task definition parameters that categorize the average execution process for the

defined task type (with particular conditions). Gives task duration estimation during its definition.

“Warm” prediction
based on description and state of scout jobs that are used to check the processing
environment. Gives prediction for the task duration immediately after task launch.

“Hot” prediction
based on the current state of task processing (states of environment and corresponding jobs).
Gives prediction adjustment during the task execution.
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Task TTC / predictive modeling

Models are based on data for the last 3 months: “mc-all” types + “mc-recon” type
Test data is of “mc-recon” type for the last month

60 Real vs. predicted task durations (projectType=mc; productionStep=recon) Random Forest regress ion method
W Real task durations
[0 Predicted task durations
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Monitoring



Task profile @BigPanDA Monitor

Example; tasklD=11016615 (rtto://bigpanda.cern.ch/task/11016615/)
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Conclusion



Summary

Technigues and methods of predictive analytics
would benefit the control and monitoring processes.

The situational awareness analytic service (based
on predictive analytics techniques) would also provide
the possibility to detect the source of any malfunction,
and to optimize the whole management process.
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