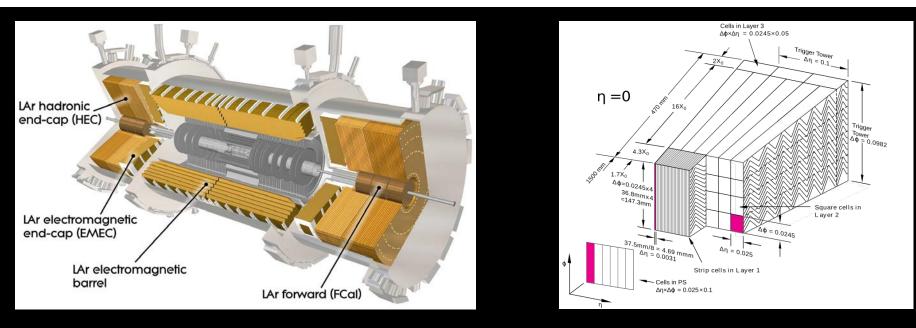

THE PHASE-II UPGRADE OF THE ATLAS CALORIMETER

G. F. TARTARELLI, I.N.F.N. – Sezione di Milano, Milano, Italy on behalf of the ATLAS Liquid Argon Calorimeter Group

NEC'2017 26th Symposium on Nuclear Electronic and Computing 25-29 September 2017 Montenegro, Budva, Becici

High Luminosity LHC



□ Instantaneous luminosities up to 7.5x10³⁴ cm⁻² s⁻¹

- □ "Ultimate" integrated luminosity up to 4000 fb⁻¹ after a period of about 12 years
- □ Up to $<\mu>$ = 200 interactions per bunch crossing
- □ Challenging run conditions will require a substantial upgrade of the LHC detectors
- □ Two upgrades of the ATLAS detector discussed here:
 - Upgrade of Liquid Argon calorimeter front-end and back-end electronics
 - New detector: High Granularity Timing Detector (HGTD)

Upgrade of Liquid Argon calorimeter electronics

Liquid Argon calorimeter system

□ EM barrel and end-cap:

- accordion geometry lead/LAr sampling calorimeters
- □ Hadronic end-caps:
 - copper/LAr calorimeter
- □ Forward calorimeter:
 - ❑ Three cylindrical modules arranged sequentially
 - □ FCal1: uses copper as absorber
 - ☐ FCal2 and FCal3: uses tungsten
- □ Total of 182468 channels

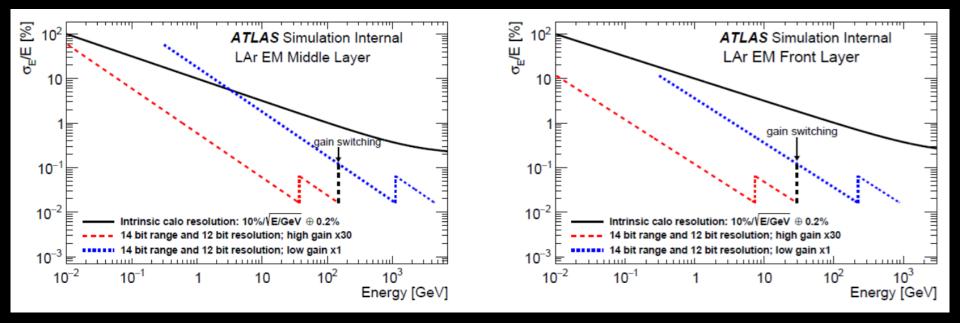
Upgrade of LAr electronics

- The LAr calorimeters themselves are expected to operate reliably during the HL-LHC data-taking period
- □ But the current electronics is not compatible with operations at HL-LHC
 - □ Radiation resistance: replace components with versions more rad-tol
 - Ageing: some components would have ~20 yrs operation. Difficult to maintain and repair
 - Trigger: the ATLAS trigger system will be upgraded to cope with the expected pile-up, making the present LAr readout electronics incompatible.
- \Rightarrow All front-end and back-end electronics will be replaced

□ Trigger and DAQ upgrade

- Baseline: one hardware trigger with 1 MHz Level-0 accept rate and 10 µs buffering interval
- □ Evolution: two hardware trigger levels operating at 2-4 MHz Level-0 accept rate (10 µs buffering) and 0.6-0.8 MHz Level-1 accept rate (35 µs buffering)

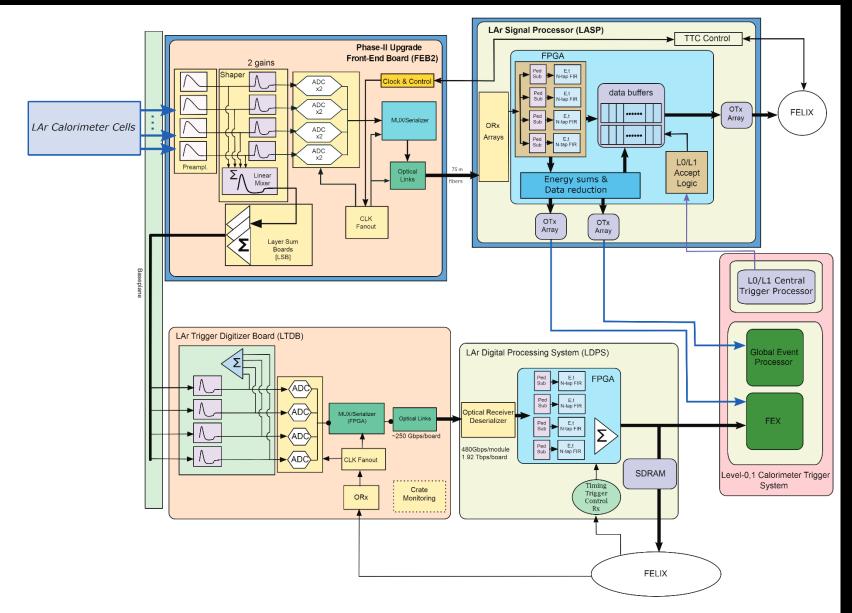
Radiation tolerance


	TID [kGy]		NIEL [<i>n</i> _{eq} /c	2] m ²]	SEE [<i>h</i> /cm ²]		
ASIC	1.24	(2.25)	$3.4 imes10^{13}$	(2)	$4.6 imes 10^{12}$	(2)	
COTS (multiple lots)	16.5	(30)	$13.6 imes 10^{13}$	(8)	$1.8 imes 10^{13}$	(8)	
COTS (single-lot)	4.1	(7.5)	$3.4 imes10^{13}$	(2)	4.6×10^{12}	(2)	
LVPS (barrel and endcap)	3.0	(30)	$3.4 imes 10^{13}$	(8)	4.3×10^{12}	(8)	
HEC LVPS	0.02	(2.25)	6.0×10^{11}	(2)	1.2×10^{11}	(2)	

Dynamic range

Iarge dynamic range needed: eg in the barrel from about 35 MeV (muon MIP deposit in one "strip"cell) to about 3 TeV (from searches of high mass resonances)

- □ Linearity
 - □ Energy scale set using Z or J/ψ. Need linearity at ‰ level up to ~10% (300 GeV) of the dynamic range; somewhat looser (few percents) at higher energies
- □ Noise
 - sum of electronic and pile-up noise: dominated by pile-up noise at high energies; can be reduced with optimal filtering techniques
 - however, especially for calibration, aim to keep electronic noise lower than MIP signal (order of 50 MeV in the "middle" cells) before filtering
- □ Shaping
 - today: bipolar CR-(RC)² shaping of analog LAr triangular signal with peaking time of 13 ns
 - plan to do something as today or similar (CR-(RC)³ also under study) with programmable peaking time


- Digitization
 - □ full dynamic range of the preamp to be digitized typically 16 bits
 - □ Baseline is to develop a 14-bit, rad-hard, ADC
 - two-gain system where each ADC digitizes only part of the range and both outputs are sent to the back-end electronics
- The quantization noise must be lower than the electronics noise (typically around half a LSB)
- At the lowest energy at which the low gain is used (gain-switching energy), the quantization noise must be lower than the intrinsic LAr resolution (typically 10%/√(E/GeV) + 0.2% in the EM calorimeters, in order not to degrade the total resolution by more than 5%.
- □ requirement from physics: arrange gain switching so that most photons from H-> $\gamma\gamma$ have their cells in high gain, as for Z decays that are used to set the energy scale

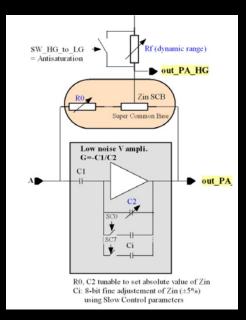
□ a system with two 14-bit ADCs, with gain ratio 30, can fulfil these requirements

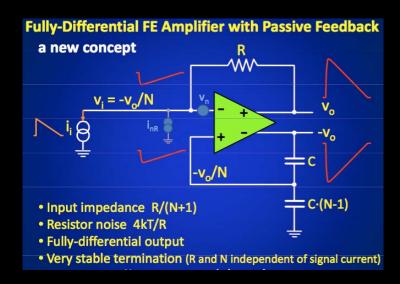
- electronics noise being typically 4 times larger than the LSB
- quantization noise being a factor 5 to 10 lower than the LAr resolution at the gain-switching energy

New read-out architecture

New readout electronics

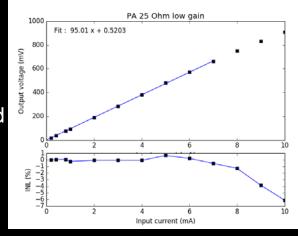
- □ Two main boards: FEB2 and LASP boards
- □ FEB2:
 - Iocated on crates attached to the calorimeter cryostats
 - □ 1524 boards, each board handles 128 calorimeter channels
 - provide input line termination, amplification, shaping, digitization and data shipping off detector for further processing
 - □ Main ASICs needed in new front-end board:
 - Preamplifier + shaper

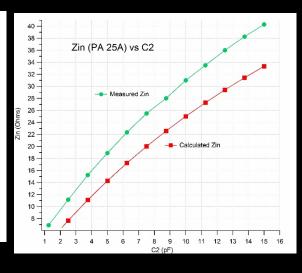

 - Serializer
- □ LASP:
 - Iocated off detector in counting room
 - receive digitized waveforms, apply digital filtering and buffer the data until a trigger decision is received
 - based on FPGA
 - □ baseline configuration: 186 boards are needed

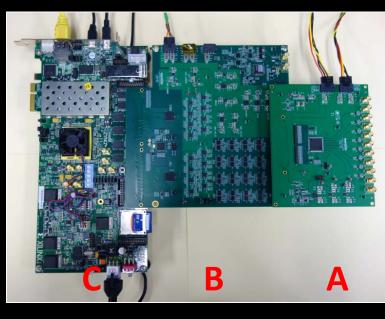

Analog processing

- □ Amplification of calorimeter signal + shaping
 - integrated in one single ASIC
- Two R&D's on-going with different technology and architecture
- □ 130 nm CMOS (TSMC)
 - Line terminating preamp with dual range output, electronically cooled resistor, Super Common Base amplifier
 - Test chip (preamp only) being measured, then irradiation and new submission which includes also shaper

□ 65 nm CMOS (TSMC)

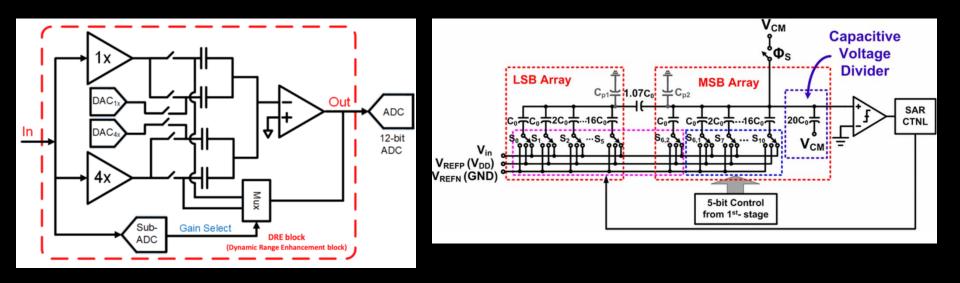

- Fully differential amplifier with passive feedback
- Pre-prototype received in July: includes preamp and shaper, programmable termination, 2 gains, programmable peaking time
- Built-in ADC driver to interface to COTS or ASICS ADC for evaluation tests
- Common test stand developed
 - Will test both solutions against technical specifications and make a choice by end 2017





Tests of front end

- □ 130 nm prototype test results
- □ Linearity ~0.1%,
 - □ within 1% up to 7 mA
- Measured about a factor of 2 more ENI than what is expected by simulation
 - Additional noise due to additional resistance in input transistor
 - new transistors designed (tests in November)
- 65 nm prototype being tested now
- Test stand in common for evaluate both front-end options:
- □ A: analog mezzanine
- □ B: digital test board
- □ C: control and DAQ board:
 - Xilinx ZC706 evaluation board

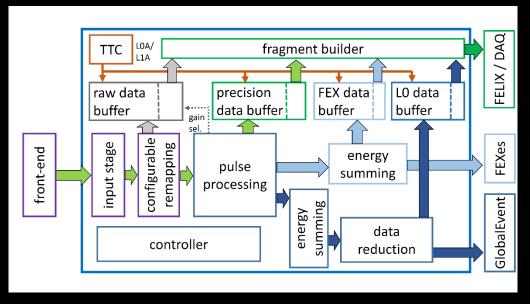


Digitization

- Digitize analog signal from each calorimeter cell at 40 Mega-Samples per Second, synchronized to the LHC bunch-crossing rate
- Cover full 16-bit dynamic range digitizing each channel with two gains, using an ADC with a 14-bit dynamic range
- □ Other requirements:
 - □ Radiation tolerance
 - □ integral and differential non-linearities below one least significant bit
 - □ less than 100 mW of power consumption per detector channel.
- □ Exploring both commercial and custom solutions
 - COTS: choice limited by cost and radiation tolerance
 - □ Custom: challenging design; design could be customized to ATLAS need

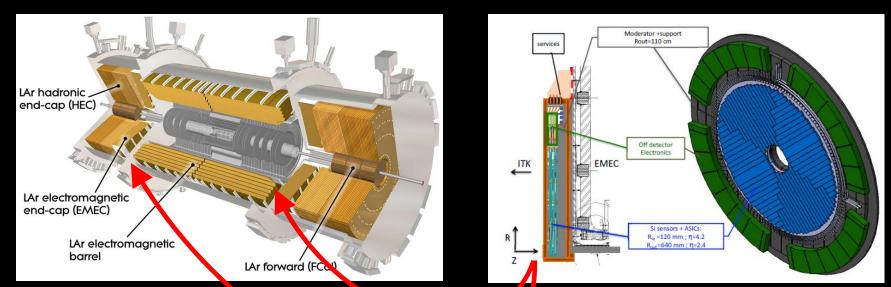
Digitization

- □ Custom design: 14-bit ADC in 65 nm process made from two parts:
 - Dynamic Range Enhancer block that determines the most significant 2 bits
 - □ 12-bit SAR (Successive Approximation Register) block
 - Test chip received in August, being tested now
 - □ Will be tested for functionality and then irradiated (total dose and SEU)



Digitization

- Commercial option: several commercial ADC tested for radiation
- □ Promising candidate: Texas Instruments ADS5294
 - □ octal 14-bit ADC, 60 mW (at 40 MSPS) consumption per channel
 - □ rad hard for HL-LHC expected doses
 - □ however SEE and SEFI (Single Event Functional Interrupt) were observed
- Estimate 10 SEE/min and 1 SEFI/min for the entire LAr system (about 50k ADC in total)
 - □ need to understand if maneageble
- □ IP block option: third, "intermediate", option under consideration
 - purchase and use critical ADC IP blocks with proven analog performance, while still having the possibility to customize the digital interface as needed for integration with the FEB2.
 - Can also tailor IPs to meet needed radiation resistance, such as minimizing the quantity of ancillary logic and introducing triple-redundancy to minimize sensitivity to SEE
 - IPs that seem to fit our requirements in terms of digitazion speed, low power, effective number of bits will be evaluated in the coming months

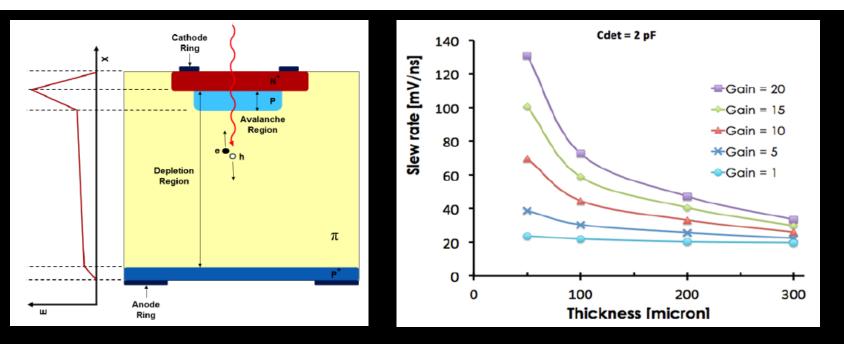

LAr Signal Processor system

- □ The LASP system will receive the digitized waveforms off detector. The full data stream of detector signals digitized at 40MHz will be available in the LASP modules
- □ Main functionalities:
 - select between the two gains
 - apply digital filtering algorithms to reduce the effects of electronics noise and pileup noise
 - energy and time measurement of LAr signal pulses
 - □ buffer the data until a trigger decision is received
 - □ transmit the relevant data to the trigger and data acquisition (DAQ) systems

High Granularity Timing Detector

High granularity timing detector

- □ Timing detector to be placed at $z = \pm 3.5$ m from the interaction point, in front of the forward and EM endcap (inner wheel) calorimeters
- Provides time information for tracks/physics objects, complementing the spatial and p_T information provided by tracking and calorimeters
- □ At LHC vertices are distributed (Gaussian) with: $\sigma_z = 5$ cm ($\sigma_t = 180$ ps); with pile-up there are on average 1.6 vertices/mm
 - Tracking detectors provide resolution of primary vertices in forward region typically >1 mm, which leads to merging of up to 7 collision vertices
 - □ time detector with a resolution of 30 ps per MIP should be able to assign a vertex to each particle

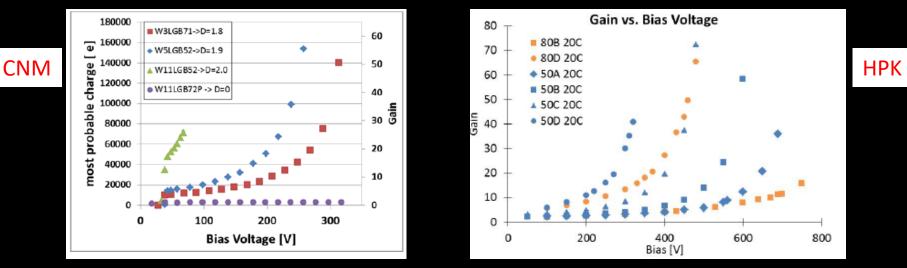

Design and requirements

Pseudorapidity coverage	$2.4 < \eta < 4.2$
Position in z	3420 < z < 3545 mm including 50 mm of moderator
Position of active layers	3435 < <i>z</i> < 3485 mm
Radial extension (active area)	110–1100 mm (120 mm–640 mm)
Number of layers	4 per side
Time resolution	30 ps / mip (< 60 ps / mip / layer)
Sensor size	$1.3 \times 1.3 \text{ mm}^2$
Number of channels	6.3M
Number of Si modules $(2 \times 4 \text{ cm}^2 \text{ each})$	13952
Number of ASICs $(2 \times 2 \text{ cm}^2 \text{ each})$	27904
Total active area (Si sensors)	11.16 m ²

Table 1: Main parameters of the HGTD.

- \square 4 silicon layers (planes) in each endcap, made of Low Gain Avalanche Diode (LGAD) pads with an active thickness of 50 μm and a pad area 1.3 x 1.3 mm²
- □ Big constraints coming from available space for the detector and radiation levels
- □ full z-envelope for detector including supports,... is only 75 mm
- □ at radius 120 mm: 9 x 10^{15} n_{eq} neutron fluences and 9 MGy (w/ safety factors)
 - plan to replace 20% sensors and ASICs (up to 300 mm) after about half of the expected doses
 - $\Box \Rightarrow$ requirement: 4.5 x 10¹⁵ n_{eq}/cm² and 4.5 MGy max

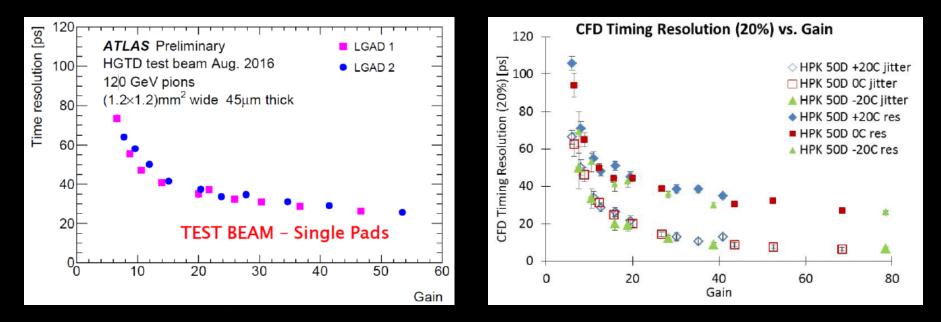
LGAD sensors


- LGAD are n-on-p silicon detectors containing an extra highly-doped p-layer below the n-p junction to create a high field which causes internal gain
- □ Targeting time resolutions of 60 ps/MIP on single layer, 30 ps/MIP with 4 layers
- Best time resolution favors thin sensors and large gain:
 - \Box 50 µm thick sensors from simulations and beam tests
 - gain of about 20, compromise between good resolution and safe operation with a voltage not too near the breakdown voltage

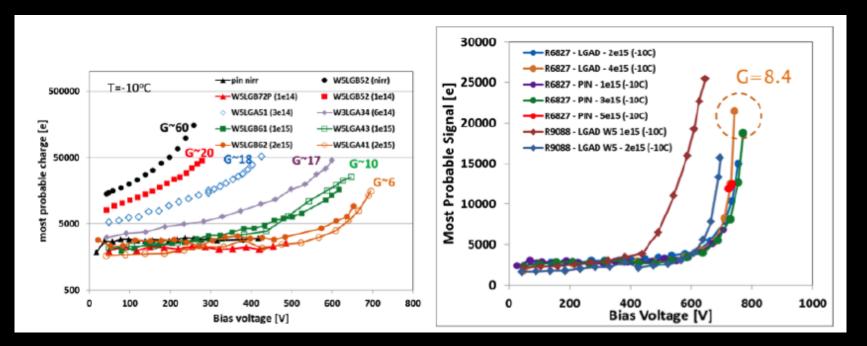
LGAD sensors

Manufacturer	Wafer size	Substrate	Thickness	Sensor types	Size	Technology	
	[inch]		[<i>µ</i> m]		[mm]	enhancement	
CNM	4"	Epi, SoI,	300, 75,	Single pads,	1, 2, 3	B->Ga substitution	
	(2017 6")	Si-Si-bond	45	2x2 up to 8x8 array		C implantation	
FBK	6"	Si-Si-bond	300, 50	Single pads,	1, 2, 3	B->Ga substitution	
				many arrays		C implantation	
HPK	6"	Si-Si-bond	80, 50,	Single pads,	1, 3	$< 50 \mu m$ thick	
			30	2x2 arrays			

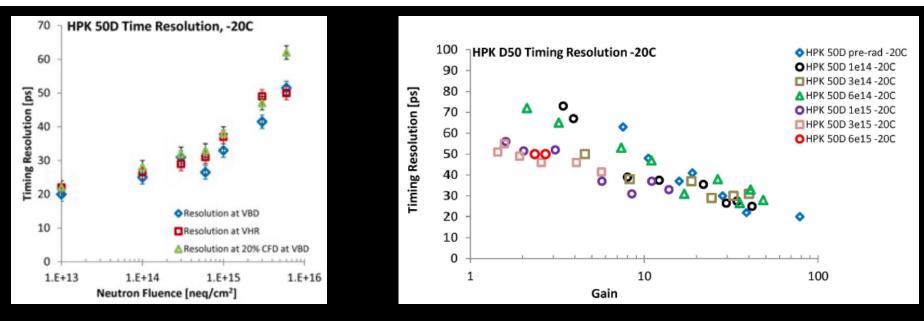
□ Several sensors studied from CNM, FBK and HPK


- □ Various structures, size, doping dose tested from various production runs
- □ Intense characterization in lab, test beam and after irradiation
- overall good and consistent results from the devices

NEC'2017 - September 28, 2017


Timing resolution

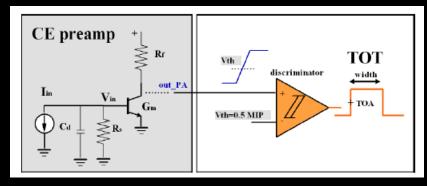
- Time resolution extensively studied in various beam
- Sub-30 ps time resolution can be achieved below the breakdown point before irradiation for the 1.3 x 1.3 mm² devices with about 4 pF capacitance
- Temperature dependence also studied
 - running at lower temperatures (< -20 °C) increases gain, reduces breakdown voltage and improves performance (time resolution, jitter)</p>
 - □ Plan to operate at −30 °C

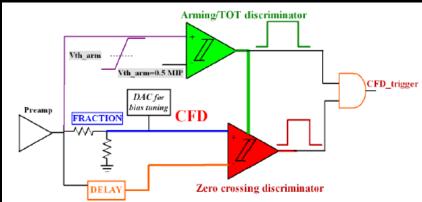


LGAD after irradiation

- Gain decreases with irradiation
 - Ioss of the effective doping concentration in multiplication layer due to deactivation of initial boron as acceptors
 - Beyond 2 x 10¹⁵ n_{eq}/cm² the multiplication layer has almost no effect, only bulk multiplication at high average fields, on device performance. Steep increase of charge with bias voltage: detectors are operated close to device breakdown

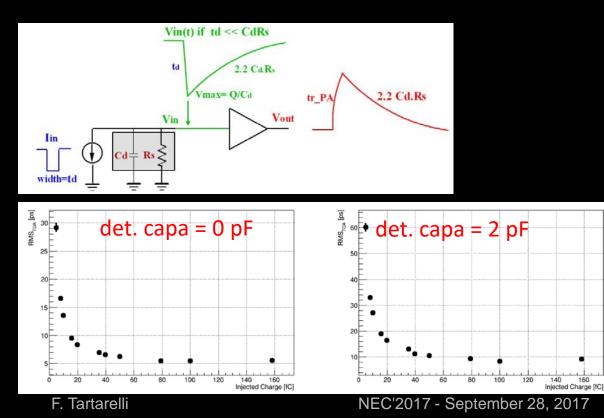
Time resolution after irradiation




- □ Highly irradiated LGAD need high bias voltage, close to 700V
 - need higher bias voltage for a certain gain
- Gain relates directly to time resolution
- At highest fluences, multiplication in bulk leads to decreasing signal rise time, so leading to better time resolution at the same gain
 - from 20 ps pre-irradiation to 40 ps after 1 x 10¹⁵ n_{eq}/cm² to 50 ps after 6 x 10¹⁵ n_{eq}/cm² for HPK devices
- □ → Available LGAD sensors can be operated safely up to the fluence of 4.5 x 10^{15} n_{eq}/cm², keeping a time resolution of 50 ps (60 ps per layer required)
- However further LGAD developments in RD50 and CNM are on going to increase rad hardness by reducing the acceptor removal:
 - Ga or C (spray or diffused) in place of B, etc..

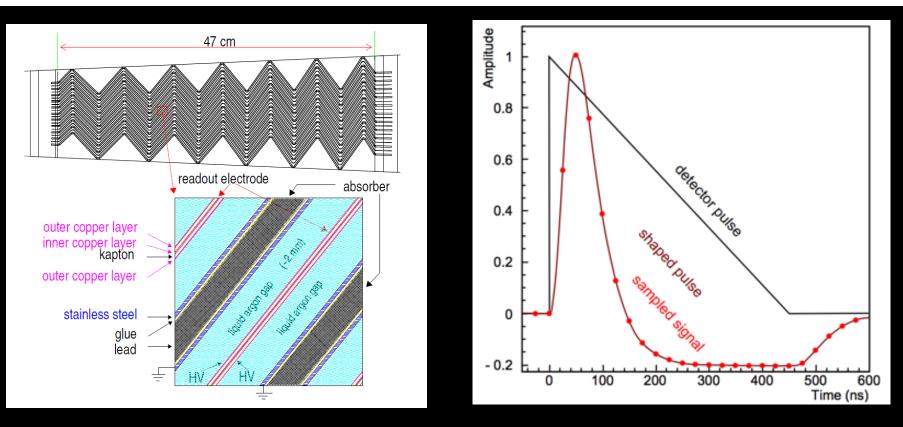
Readout electronics

- Sensors read-out by on-detector ASICs bump-bonded to the sensor
 - digitized ASIC output signals will be transferred through flex cables to the off detector electronics and finally to counting room with optical fibers
- ASIC consist in amplification, followed by discriminators, digitized by a TDC and stored in a memory until a trigger accept is received
- □ Strong requirements:
 - rad levels: some ASICS will be replaced during detector lifetime
 - dynamic range: simulated with electrons in the detector
 - □ time jitter: < 20 ps
 - □ low power
- To correct for the time walk dispersion, two methods (one will be chosen):
 - the amplitude of the pulse needs to be measured. Measure the pulse width, which is proportional to the amplitude with a TOT discriminator
 - 2. Use a Constant Fraction Discriminator (CFD)


Pad size	$1.3 \times 1.3 \text{ mm}^2$
Detector capacitance	3.4 pF
TID and neutron fluence	Inner region: 4.5 MGy, 4.5×10^{15} n / cm ² Outer region: 2.1 MGy, 4.0×10^{15} n / cm ²
Number of channels/ASIC	225
Collected charge (1 mip) at gain=20	9.2 fC
Dynamic range	20 mips
(preamplifier+discri) jitter at gain = 20	<20 ps
Time walk contribution	< 10 ps
TDC binning	20 ps (TOA) and 40 ps (TOT)
TDC range	2.5 (TOA) and 10 (TOT) ns
Number of bits / hit	7 for TOA and 9 for TOT
Luminosity counters per ASIC	7 bits (sum) + 5 bits (outside window)
Total power per area (ASIC)	<200 mW/cm ² (<800 mW)
e-link driver bandwitdh	320 Mb/s, 640 Mb/s and 1.28 Gb/s

Prototype measurement

- □ First prototype (ALTIROC 0) in TSMC 130 nm with preamp, TOT and CFD (no TDC yet):
 - eight channels, four optimised for 2 pF detector (corresponding to a previous design of 1 x 1 mm² pad size)
 - also used for tests of bump bonding to sensors
 - will be used for test in lab and at test beam
- Preliminary test bench measurements:
 - □ voltage test pulses with rise time less 100 ps injected through a 100 fF capacitor
 - □ test results varying the injected charge 5-160 fC
 - □ discriminator threshold at 2.5 fC (25% of a MIP for a LGAD with gain=20)
- Only TOT used so far, CFD not yet satisfactory



Conclusions

- The challenging conditions of operation at HL-LHC require substantial upgrades of the ATLAS detector
- □ Status reports on two of these upgrades have been presented:
 - upgrade of the readout electronics of the Liquid Argon calorimeter
 - new High Granularity Timing Detector for pile-up suppression in the forward region
- The projects are progressing well and latest development in several areas have been presented
- The Liquid Argon electronics upgrade is reaching a major milestone with the submission of its Technical Design Report this week
- □ The HGTD project just undergo an Initial Design Review that will lead to the preparation of a Technical Design Report in late 2018

Back-up

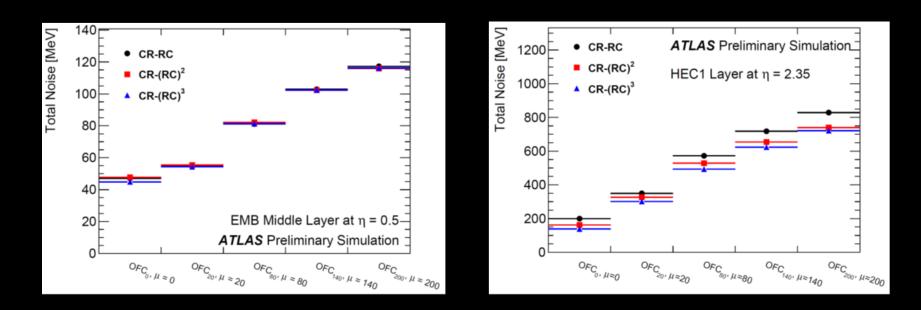
Signal in LAr

LAr electronics dynamic range

Layer η range	Presampler <0.6 >0.6		Front <0.8 >0.8		Middle <0.8 >0.8		Ba <0.8	nck >0.8
MIP values [MeV]	_	_	50	35	250	300	_	_
μA GeV ⁻¹	0.84		2.67	3.16	2.67	3.16	2.67	3.16
Current electr. Preamp. max. current [mA] Max. energy [GeV]	1 1190		1 375 317		5 1873	10 3165	1873 ⁵	5 1582
Req. for HL-LHC Max. current from 5 TeV Z' [mA] Max. current from jets [mA] Max. from both [mA]	<0.05 <0.05 <0.05	0.51 0.23 0.51	0.84 0.57 0.84	0.81 0.78 0.81	5.36 6.78 6.78	7.86 7.13 7.86	0.91 1.63 1.63	0.90 2.42 2.42

Table 3.2: Characteristic values for the LAr electromagnetic barrel cells: typical energies from MIP, maximum currents and energies allowed by the existing electronics, and new estimations of the maximum input currents as obtained in simulation.

Layer	Presampler	Front		Middle			ick
$ \eta $ range	<1.8	<2.0	>2.0	<2.0	>2.0	<2.0	>2.0
MIP values [MeV]	-	42-32	20 - 10	250	240 - 300	_	-
μA GeV⁻¹	0.28	2.26-2.69	2.71-3.01	2.26-2.66	2.69-2.94	2.33-2.65	2.68-2.92
Current electr.							
Preamp. max. current [mA]	1	1		10		5	
Max. energy [GeV]	3570	442–372	369–332	4425–3759	3717-3401	2146–1887	1886–1712
Req. for HL-LHC							
Max. current from 5 TeV Z' [mA]	0.11	1.90	1.41	7.15	7.68	0.22	0.77
Max. current from jets [mA]	0.09	1.61	0.61	6.16	3.30	0.89	1.50
Max. from both [mA]	0.11	1.90	1.41	7.15	7.68	0.89	1.50

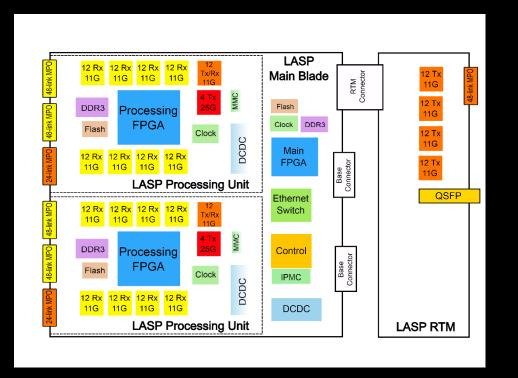

Table 3.3: Characteristic values for the LAr electromagnetic endcap cells of the outer wheel ($|\eta| < 2.5$): typical energies from MIP, maximum currents and energies allowed by the existing electronics, and new estimations of the maximum input currents as obtained in simulation.

NEC'2017 - September 28, 2017

Data transmission

- The ADC data need to be serialized and transmitted from the on-detector FEB2 boards to the off-detector LAr Signal Processor (LASP) boards using optical links.
 Add BCID info
- □ 14-bit ADC word reformatted at 16 bits and serialized at a rate of 640 Mbps
- □ Total date rate per FEB2 of 163.84 Gbps
 - □ 128 chs x 2 gains x 640 Mbps
- □ Will use IpGBT and Versatile Link+ for optical links:
 - IpGBT is a 65 nm CMOS (TSMC), lower power and higher bandwidth version of GBT chip
- □ Estimate 22 IpGBT/FEB for data transmission

Digital filtering



□ Total noise as a function of pile-up levels for different shaping functions

- □ Optimal filter coefficients (OFC) are recalculated for each case
- □ OFC to a large extent cancel the difference in analog shaping

LASP board

- LASP boards will be realized in full-size ATCA format and based on high performance FPGA connected via high-speed links to electro-optical receivers and transceiver arrays with additional memory and clock distribution devices
- □ One LASP will receive data from 4 FEB2 boards
- □ With 512 channels input, input data rate is 655.4 Gbps per LASP processor FPGA

ASICS: next steps

- ALTIROC 0 ASIC will be characterized on test benches and in test beam in Autumn 2017 to gain experience whith the analog part
- □ Next iteration, ALTIROC 1, expected to be submitted in February 2018.
- □ This chip will contain:
 - □ 16 or 25 channels (still to be defined)
 - □ Both the analog and digital part of the single pixel read-out
 - □ Variants of CFD and TDC architectures to compare performances
- □ Will be extensively tested in Summer 2018
- □ Final ASICS will integrate 255 channels