
NEC, Budva, 25 Sept 2017

The ATLAS Production System
Evolution

M. Borodin (U of Iowa)

On behalf of F. Barreiro, K. De, D. Golubkov, A. Klimentov,

T. Korchuganova, T. Maeno, P. Nilsson, S. Padolski, T. Wenaus and

ATLAS collaboration

NEC, Budva, 25 Sept 2017

Introduction
● PanDA - Production and Distributed Analysis System

○ Designed to meet ATLAS production/analysis requirements for a

data-driven workload management system capable of operating at LHC

data processing scale

● New generation of ATLAS production system was developed

for Run 2 and beyond – ProdSys2

○ Improved resource utilization

○ New types of computing resources: HPC, Clouds

○ Improved usability and robustness

2

NEC, Budva, 25 Sept 2017

ATLAS production system design goals

● Deliver transparency of data processing in a distributed computing environment

● Achieve high level of automation to reduce operational effort

● Flexibility in adapting to evolving hardware, computing technologies and network

configurations

● Scalable to the experiment requirements

● Support diverse and changing middleware

● Insulate user from hardware, middleware, and all other complexities of the

underlying system

● Support custom workflow of individual physicis groups

● Incremental and adaptive software development

3

NEC, Budva, 25 Sept 2017

Orders of magnitude

4

300 PB of data is managed by ATLAS

DDM system (Rucio)

More than 300K cores used by

simultaneously running jobs in the system

NEC, Budva, 25 Sept 2017

ATLAS production system components
● Web UI for Managers and Users provides the interface

for task* and production request managing and

monitoring at the higher level

● Database Engine for Tasks (DEFT): is responsible for

formulating the tasks, chains of tasks and also task

groups (production request), complete with all necessary

parameters

○ It also keeps track of the state of production

requests, chains and their constituent tasks

5

● Job Execution and Definition Interface (JEDI): is an intelligent component in the PanDA server to have capability for task-level

workload management.

○ Key part of it is ‘Dynamic’ job definition, which highly optimizes resources usage compared to ‘Static’ model used in

ProdSys1.

■ Dynamic job definition in JEDI is also crucial for multi-core, HPCs and other new requirements

● Monitoring (BigPanDA): progress, status and error diagnostics for all components.

● The PanDA pilot is an execution environment used to prepare the computing element, request the actual payload (a production or

user analysis job), execute it, and clean up when the payload has finished. Input and output are transferred from/to storage

elements, including object stores.

*Task consists of jobs that all run the same program.

NEC, Budva, 25 Sept 2017

High level overview

6

NEC, Budva, 25 Sept 2017

Dynamic job definition
● Excluding requirements from users of

detailed knowledge on computing

resources

○ Especially for heterogeneous resources, e.g.,

many CPU cores, very short walltime limit,

etc

● Self-optimization of job parameters

○ Real job metrics are collected using scout

jobs

■ A small number (~10) of jobs (= scout

jobs) are generated for each task with

minimum input chunks

○ Job parameters are optimized using job

metrics for the rest of input

7

● More intelligence to the brokerage

based on

○ Job retry history

○ Network forecast

○ Cache hit rate

NEC, Budva, 25 Sept 2017

New model with no hierarchy (world cloud)
● Task nucleus:

○ Task brokerage will choose a nucleus for each task based on various criteria

○ The task output will be aggregated in a nucleus

○ The capability of a site to be a nucleus is defined manually in AGIS (ATLAS Grid Information System): Tier 1s and

the bigger Tier 2s are defined as nuclei

● Task satellites:

○ Run jobs and ship the output to a nucleus

○ Job brokerage selects satellites for each task, based on usual criteria (e.g. number of jobs and data availability)

○ Satellites are selected across the globe: a network weight will bias towards well connected nuclei and satellites

8

NEC, Budva, 25 Sept 2017

Event service
● A fine-grained approach to event processing. Designed for

exploiting diverse, distributed and potentially short-lived

resources

○ Quasi-continuous event streaming through worker

nodes

● Exploit event processors fully and efficiently through their

lifetime

○ Real-time delivery of fine-grained workloads to

running application

○ Be robust against disappearance of compute node on

short notice

● Decouple processing from chunkiness of files, from data

locality considerations and from WAN latency

● Stream outputs away quickly

○ Negligible losses if the worker node vanishes

○ Minimal demands for the local storage

9

NEC, Budva, 25 Sept 2017

Harvester
● Harvester is a resource-facing service

between the PanDA server and

collection of pilots for resource

provisioning and workload shaping. It

is a lightweight stateless service

running on a VObox or an edge node

of HPC centers to provide a uniform

view for various resources. The

following picture shows how

harvester interacts with PanDA and

resources.

10

NEC, Budva, 25 Sept 2017

HPC
● HPC’s are integrated to the

ATLAS production system

○ Titan at OLCF

○ Edison/Cori at NERSC

○ SuperMUC at LRZ

○ HPC2 at NRC-KI

○ ...

11

NEC, Budva, 25 Sept 2017

DEFT data model and workflows
● Model is represented by multilevel relational instances:

○ Request -> Slice(chain of steps) -> Step -> Task

○ Depending on workflow each instance could play a role of a template

○ Tasks are created by initiating a step instance.

● ATLAS production workflows were implemented in chosen model

○ MC simulation is composed of many steps: generate hard-processes, hadronize signal and minimum-bias events, simulate

energy deposition in the ATLAS detector, digitize electronics response, simulate triggers, reconstruct data, transform the

reconstructed data into reduced forms for physics analysis

12

● Data Reprocessing workflow has a tree structure, where output of one task can be an input for several more tasks

● Derivation is using so called “train” model, there each input runs on some of many predefined outputs

● Tier-0 workflow

● HLT, EventIndex, …

NEC, Budva, 25 Sept 2017

DEFT use case examples
“...In mc16, the datasets are mutually exclusive so each dataset must have campaign and sub-campaign attributes. For examples, if I

have an EVNT container it can have many TID datasets from several sub-campaigns and several TID dataset for each

sub-campaign. At any times we can add TID extension dataset for any of the sub-campaigns….”

“...The original request is 1M events but due to some failures in the simulation step, the number of produced events is a little bit

smaller than 1M events. In this case, the tasks of the digit+recon cannot be started due to "not enough input events". But if the

request number is consistent with the existing events within 10% level, for example, in case of 1M events, if 900,000-1,000,000

events exists, tasks should be started w/o error. Is it possible?...”

“...This would mean that when the "Approve" button is used only the evgen task is created at first. Then, when the evgen task has

reached some threshold of completed jobs, the rest of the chain from simulation onwards would be submitted...”

“...We would like to request a change to the way the final state is set for tasks with very low numbers of jobs, specifically those with

<=10 jobs. At the moment these tasks are treated in the same way as scouts, i.e. they go to finished if any of the jobs succeed. This is

problematic for us for two main reasons...”

13

NEC, Budva, 25 Sept 2017

DEFT and web UI development and deployment
● Key development points

○ Agile methodology: continuous

meetings with the main users and

often releases

○ Using open source

■ Django, Celery, AngularJS

○ «Model View ViewModel» approach

14

● Using CERN SSO(Shibboleth) for

authentication and authorization

NEC, Budva, 25 Sept 2017

Web UI

15

Request management Request creation interface

Tasks management

NEC, Budva, 25 Sept 2017

Production request processing
● Task request Web UI provides many general and experiment specific features:

○ Bookkeeping. Storing metadata, including arbitrary hashtags, allows to provide fine tuning statistics

for running and historical tasks.

○ Approval management. E.g. MC production request required several levels of approval.

○ Monitoring. User can easily follow progress of a running tasks.

○ Error Handling. Task could fail because of many permanent (e.g. bug in software) and temporal

(storage is down) reasons. To be able to quickly understand the root of the problem and fix it by

redefining the task is one of the major features of the production system.

○ Chaining one production to the other. E.g. derivation production could be chained to MC or

reprocessing task, that significantly speeds them up.

○ Automation of task submission. User can define a pattern and when new data appears tasks are

started automatically.

○ ...

16

NEC, Budva, 25 Sept 2017

PanDA control
● Web UI is used to configure PanDA

parameters

○ Limits, caps and weights

○ Share percentage

○ Retry module

17

NEC, Budva, 25 Sept 2017

BigPanDA Monitoring

18

NEC, Budva, 25 Sept 2017

ATLAS Nightly Test
● Some of the ATLAS functional software tests were moved to the grid

○ Too big to be run on dedicated test machines

○ It’s important to test them in the production environment

● Special interface was developed for Nightly test submission and monitoring

19

NEC, Budva, 25 Sept 2017

The Growing PanDA Ecosystem

20

NEC, Budva, 25 Sept 2017

Future
● Constantly increasing luminosity and always limited computing budget require to

find ways for further efficient and economical use of traditional and new

computing resources

● Automation of the system based on prediction for resource availability and the

expected completion time for each task

● Interface evolution, such as automation of some operations, will improve system

usability

21

