The ATLAS Trigger system upgrade and performance in Run 2

Savanna Shaw On behalf of the ATLAS collaboration

25-29 September

4日 4日 4日 4日 4日 4日 4日 900

Introduction

- Trigger selects events of interest for wide range of physics processes studied by the ATLAS experiment.
- Need to be able to deal with ever changing conditions from LHC
 - Increasing luminosity and pile up increase rates
- Need to maintain a high efficiency over all different physics signatures while keeping within various constraints
 - Hardware limitations, finite computing resources (at trigger level and at offline reconstruction level)

	\sqrt{s}	Peak luminosity	Peak pileup
	[TeV]	$cm^{-2}s^{-1}$	
2012	8	0.77e34	35
2016	13	1.4e34	45
Expected 2017/18	13	2.0e34	60

Overview

• Trigger has two steps: hardware based Level 1 (L1) and software based High Level Trigger (HLT).

Improvements with respect to Run 1

Level 1

HLT

- Input from L1 in form of region of interest
 - Geometric region in η and ϕ with information about object type and passed thresholds
- Combines information from multiple subdetectors
- Software based, runs similar algorithms as offline reconstruction on a dedicated computing farm (\sim 40k cores)
- \sim 1 kHz output rate, latency ${\sim}300$ ms.
- Fast Tracker (FTK) currently being commissioned
 - Hardware based full event tracking
 - Can be used in place of CPU intensive HLT tracking

2016 Performance

NEC 2017

- In order to cope with higher luminosity and pileup several improvements implemented across different signatures.
- Ultimate goal to reduce rates (to keep thresholds as low as possible) and CPU time, and to reduce pile up dependence on rates, while maintaining a high efficiency.

Electron and Photon Improvements and Performance

- Tighter EM isolation at L1 to keep thresholds low
 - 10-15% reduction in rate without losing efficiency
- Improved likelihood tunes using 2016 data
- Isolation added at L1 and HLT for photon triggers
 - · Keeps thresholds low for low mass di-photon searches

Muon and B-physics Improvements and Performance

- Optimized coincidence of hits between different layers of the muon spectrometer, and overlap removal to keep rates at L1 low
- Improved fast muon finding resolution for forward muons
 - Improves early rejection of events, which cuts down the frequency with which more precise and more CPU intensive muon finding runs
- L1Topo triggers reduce rate for B-physics triggers.
 - Allows for lower thresholds of dimuon triggers at L1
 - Reduces rate at which HLT is run.

Tau and B-Jet Improvements and Performance

S. Shaw (Manchester)

NEC 2017

25-29 September 11 / 15

Jets Improvements and Performance

- Additional jet energy scale calibration applied for most jet (R=0.4) triggers
 - Uses tracking and jet shape information
 - Improves resolution of jets at HLT relative to offline
 - Can reach full efficiency at lower pT without increasing rate

Jets Improvements and Performance

- Large R (R=1.0) jet triggers include jet grooming techniques to reduce rate dependence on pile up
 - Trimming reclusters jet constituents into subjets which are removed if the fraction of subjet pT is too low
 - Mass cut added to distinguish between jets from QCD vs jets from W/Z/H

Missing E_T Improvements and Performance

- New algorithm, PUFit, to reduce pile up dependence of MET rate
 - MET calculated as negative sum of E_T of all topological calorimeter clusters is corrected for pile up on an event-by-event basis
 - Topoclusters grouped into towers and split into low and high pT towers.
 - Pileup contribution to high pT towers determined by fitting low pT tower, subtracted from high pT towers
 - Can keep lower thresholds at higher luminosity

S. Shaw (Manchester)

- ATLAS trigger operating smoothly throughout Run 2, collecting events suitable for a wide range of physics interests
- Many improvements to continue coping with increasing luminosity and pile up
 - · Maintain high efficiency and keep thresholds low

Backup

э

• • • • • • • •

三日 のへの