The ATLAS Trigger Menu design for higher luminosities in Run 2

Emma Torró, on behalf of the ATLAS Collaboration University of Washington - Seattle

NEC 2017

Budva 25-29 Sept. 2017

Introduction

- Excellent performance of LHC and ATLAS during 2017:
 - record peak luminosity: 1.74x10³⁴ cm⁻² s⁻¹
 - ▶ peak interactions/bunch crossing (pileup) : μ ~56
 - recorded luminosity during 2017 to date: ~22fb⁻¹

The ATLAS trigger system operated successfully in Run-1 and Run-2
 Conditions become more and more challenging:

	bunch spacing	√s	luminosity	peak pileup
Run-1	50 ns	8 TeV	< 1e34	~30
Run-2	25 ns	13 TeV	1 - 2e34	~56

Many improvements in the ATLAS Trigger system for Run-2 - see talk by Savanna Shaw

Trigger Chain definition

- Selection of events is done following physics criteria in two steps:
 - Level-1 (L1) trigger:
 - First and simple preselection based on coarse information from the detector

40 MHz

Read-Out

Peak of

100kHz

@ L1

Average of

1kHz

@ HLT

- Determine Regions-of-Interest (RoI) from calorimeter and muon system.
- Require presence of muons, calorimeter energy deposits consistent with e/ gamma, taus, jets, MET, etc. E.g:
 - ► EM22: require a signal in EM calorimeter with E_T>22 GeV
 - ▶ MU20: require a signal in the muon system with a muon of E_T > 20 GeV
- Many possible combinations of object selections
- High-level Trigger (HLT) algorithm
 - Activated if L1 is passed
 - Fast algorithms run on Rols with full event information
 - Designed to be as close to offline as possible
- Sequence Level 1 criteria + HLT criteria form a trigger chain.
- Example: single electron trigger chain

E. Torró

Trigger Menu Design criteria

- Trigger Menu: list of chains to be used in data-taking, together with rate allocation depending on luminosity
- Objective in menu design: cover the wide ATLAS physics program with no gaps in physics coverage and within trigger system constraints
- The trigger menu needs to respect several limitations:
 - Detector readout: only 100kHz can be sent to the HLT
 - CPU limitations (cannot perform full ID tracking on every event)
 - Offline storage limitation: HLT physics output is limited to 1kHz average
- Trigger strategy for bandwidth allocation is developed to maximize physics coverage
 Inputs from:
 - Physics program in ATLAS:
 - Most bandwidth given to generic triggers (e.g. MET or inclusive single electron/ muon with low p_T thresholds)
 - More dedicated/multiobject triggers with smaller rates (a few Hz) in order to cover specific phase spaces.
 - Performance groups
 - Detector experts (monitoring, calibration)

Final Trigger Menu

- Large set of trigger chains implemented:
 - ~2000 types of chains
 - It needs to keep a good balance between the trigger signature groups
- Triggers may be prescaled by a factor of p (only 1/p events is considered by the trigger) in order to fulfil the tigger system limitations
- Physics analyses need trigger stability

 Define Primary triggers which are never prescaled. When major change in luminosity, the primaries can change
- All chains properly validated and simulated in Monte Carlo

Rates and CPU tools

- The Trigger menu is designed for different luminosity conditions different prescale sets for different luminosity points
- Need precise rate and CPU usage predictions in order to design the prescale sets for different beam conditions and to study new triggers
- Special datasets called Enhanced bias are used for rate and CPU estimations:
 - Only L1 triggers, select dataset enriched in medium and high- p_T physics.
 - Recorded every time data-taking conditions change significantly (increased pileup or lumi)
 - Can be used to study new HLT selections minimising input bias and for validation of existing triggers ATL-DAQ-PUB-2016-002

Trigger Menu Operations

- New menus are deployed at P1 every few weeks, to add newly requested chains and adjustments.
- Before deployment, the menu is **carefully validated** by reprocessing and rate prediction
- Individual trigger rates are adjusted via prescale (PS) sets at L1 and at HLT to optimise the bandwidth usage, depending on the instantaneous luminosity
- ▶ In 2017, prescale sets are defined up to 2.0x10³⁴ cm⁻² s⁻¹

Performance in 2017

- Performance and efficiencies studies show good trigger behaviour that satisfy the requirements from the ATLAS physics program.
- Several improvements for higher luminosity and pile-up conditions

CPU usage reduction

- HLT PC farm has a finite size (~40k processing slots)
- Running many complex trigger algorithms at higher luminosities & pile-up conditions
 heavy CPU usage in the HLT farm.
- Some algorithms scale exponentially with pileup.
- Large CPU reduction campaign was achieved successfully for 2017 data taking to keep CPU usage within the available resources
 - technical improvements to trigger software: software optimisation
 - algorithm improvements to speed up
 - menu/trigger-sequence-order optimisations
 - higher rejection at earlier stage
 - more effective usage of shared algorithms by multiple triggers

Performance in 2017

Missing Transverse Energy (MET)

- MET triggers rates present a dependence on pile-up.
- By mitigating it we can lower the thresholds (gain in efficiency) with no increase in rates
- Several new algorithms studied:
 - mht: cut on the negative sum of transverse energy of jets (missing H_T)
 - cell: cut on the negative sum of transverse energy of cells above noise threshold
 - pufit: identify calorimeter energy deposits from pileup and subtract them from MET
- Best performance given by **pufit**:
 - strongest reduction in rate as a function of pile-up
 - reaches an efficiency plateau as quickly as mht+cell combination to speed up
 - pufit used by default in 2017

E. Torró

Budva, 25-29 Sept. 2017

250

350

 E_{τ}^{miss} (offline, no muons)

50

100

L1 Topological Triggers

- FPGA-based algorithms that analyse geometrical information on candidate trigger objects
- Event topological selections using muon and calorimeter information at Level-1
- Suppresses backgrounds and reduces rates at L1, allowing to keep thresholds more optimally low.
- Essential for some signatures with 2017 luminosity conditions.
- Physics examples
 - ▶ High mass di-jet pairs from VBF processes $\rightarrow M_{inv}(j_1, j_2)$
 - ► Di-muons with a limited opening angle from *B*-hadrons $\rightarrow \Delta R(\mu_1, \mu_2)$:
 - L1 rate reduced by a factor of 4 with only 10% loss in HLT efficiency

E. Torró

Budva, 25-29 Sept. 2017

Summary

- The definition of the trigger menu is a complex procedure
 - take into account inputs from several groups: physics analyses, detector calibration, monitoring, etc
 - respect technical limitations: bandwidth, CPU usage, etc.
- The ATLAS trigger system has been upgraded
 - ▶ to cope with the challenging conditions it's facing in Run2 with higher luminosity.
 - to have no significant efficiency loss despite the challenging conditions
- Several steps in monitoring and validation ensure correct behaviour of the trigger menu after every adjustment or inclusion of new triggers to the system
- The Trigger Menu evolves with changing conditions and the increasing luminosity conditions at the end of 2017
- The performance has been successful so far during Run-2, allowing for collection of lots of good data used by analyses in ATLAS

E. Torró Budva, 25-29 Sept. 2017

12

Backup

E. Torró Budva, 25-29 Sept. 2017

Links to ATLAS public results

- ATLAS public results:
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic
- ATLAS public results on the Trigger System:
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerPublicResults