'~wwvwvwwwwwwwvwwﬁfﬂfﬁﬂﬁﬁﬂﬁwwwwwwwwwwwwywwywwwwwwwwwwwwwwwww=
))))J))))J ,' D
O tlmlzm EW com @h@ﬁ tf PanDA for ATLAS
<)))
)= ﬁ 2020i 06202 Jj ;
3333 "i‘,r) ‘)J‘ 05950 3 6% o0 o0 RN :
: oo 000> 626 :
s ©
Pro uct|on ,,)r@g Urces

Tadashi Maenao, Fernando Barrelro Paul Nllsson Danila Oleynik ~on behalf of the ATLAS Collaboration

PanDA Workload Management System

The PanDA workload management system was developed for the ATLAS experiment at
the Large Hadron Collider

A new approach to distributed computing
= A huge hierarchy of computing centres and opportunistic resources working together
= Main challenge — how to provide efficient automated performance
= Auxiliary challenge — make resources easily accessible to all users
Core ideas :
= Make hundreds of distributed sites appear as local
» Provide a central queue for users — similar to local batch systems
= Reduce site related errors and reduce latency
= Build a pilot job system — late transfer of user payloads
« Crucial for distributed infrastructure maintained by local experts
Hide middleware while supporting diversity and evolution
= PanDA interacts with middleware — users see high level workflow
= Hide variations in infrastructure
» PanDA presents uniform ‘job’ slots to user (with minimal sub-types)

= Data processing, Production and Analysis users see same PanDA system
x Same set of distributed resources available to all users
Highly flexible — instantaneous control of global priorities by experiment

PanDA Brief Story

= 2005: Initiated for US ATLAS (BNL and UTA)
= 2006: Support for analysis

= 2008: Adopted ATLAS-wide

x 2009: First use beyond ATLAS

= 2011: Dynamic data caching based on usage
and demand

x 2012: ASCR/HEP BigPanDA project

x 2014: Network—aware brokerggg " ||||||||||||||l||““||| .|III by "'I'I""'H'II
» 2014: Job Execution and Definition I/F (JEDI) il W il
adds complex task management and fine
grained dynamic job management

= 2014; JEDI-based Event Service s o, S0t f Running obs

x 2014: megaPanDA project supported by RF I
Ministry of Science and Education

= 2015: New ATLAS Production System, based on
PanDA/JEDI

= 2015: Manage Heterogeneous Computing
Resources

x 2016: DOE ASCR BigPanDA@Titan project

x 2016: PanDA for bioinformatics

x 2016: COMPASS adopted PanDA (JINR, CERN,
NRC-KI), PanDA beyond HEP : LSST, BlueBrain

Completed jobs
403 Weeks from Week 00 of 2010 to Week 39 of 2017

PanDA

= Pijlot based job execution system

= Pilot manages job execution on local resources, as well as data movement for the job
x Payload is sent only after pilot execution begins on Compute Element

= Minimize latency, reduce error rates

PRODUCTION r— PanDA
MANAGERS .- SERVER

request

O : -

' NERSC Edison, OLCF
: Titan, others

Task
definition

s
'
submit

NG EU Grid =

. | v/
D g
: HPC Pilot
' Manager
l : Pilot Scheduler
‘——1 (autopyfactory)

WORKER NODES

Motivation for new PanDA Plilot

Some of the Pilot 1.0 code base is getting a bit too old and is difficult to
maintain

= Refactoring is a slow process that has already been going on for years and
does not always have highest priority

= More manpower made available to alleviate a steady increase of feature
requests

= New features/workflows are often challenging to implement/support
“Complete’” rewrite

= Keeping some recent new developments (not cut-and-paste)

= (Getting rid of all legacy code and outdated mechanisms

= Rethink of basic pilot flow
New PanDA Pilot Project launched in April 2016

= Project to span the next few years

= Development and support of the old pilot (“Pilot 1.0”) will continue as it
remains the production pilot until new pilot (“Pilot 2.0”) is ready

Motivation tor Harvester

PanDA currently relies on server-pilot paradigm

= PanDA server maintains state and manages workflows with various
granularities, such as task, job, and event — Pilots are job-centric and
iIndependently run on worker nodes with limited view of local resource

» \Norks well for the grid with 250K cores 24x7 as underlying resources are not
very heterogeneous

= But missing capability to dynamically optimize resource allocation among
differences of architectures (limitations by number of cores, amount of RAM
per core, limitations of wall time etc.)

x Not very well for HPG or large-scale clouds

x Fach HPC has a different edge service and operational policy, leading to
over-stretched pilot architecture and incoherence in implementation at
different HPCs

= PanDA itself has no means of managing and monitoring cloud utilization by
using native cloud APl which is far more optimal than that of an
intermediate service like condor

Motivation tor Harvester

= New model : server-harvester-pilot

Harvester is a resource-facing service between PanDA server
and collection of pilots

Stateless service with knowledge of resource
Modular design for different resource types
Many harvester instances running in parallel

To provide a single view of a large or uniform resource that
optimizes pilot and/or workload management

To provide a commonality layer in bringing coherence to HPC
implementations

Better integration with PanDA system for various (new)
workflows, such as job/event-level late-binding and jumbo jolbs

et Pl P P DS DS S S NS NS
©o0o0o0000 6 0 0 0y

00000000 000 8000
ooe .

oo

°

L)

og®

33
ege

ogo!

o

.
)
)
®,
®,
®,

(=)
33
828

33

JJ
9,
20
°

X}

wwwd 0000

006

B
er-age Jvn!!iii

\MYJ ,Vbiiiﬁi
B 000000000

0000000

o
o
o
og0
082
J
)\)
J

5 J

9
o,
o
J
)
J
J

o,
o,
)
o,
J
J
J

HI
oo
egeg
ogeQ
og0Q
JJ)
)))
)))
®.®

3
3
o
o
S,
®
J
J
vy

.033
ogo.
0 g
oge
33
O8>
82

~3j
°g

<3

®

)
S
©
o
o
=

3
508
o508 b >

320
@ ®r®r®

J

Component model

Job recove Job control

- find unstaged files - get jobs from global - monitor payload progress
- stage-out files scheduler or local scheduler - measure memaory

- cleanup - validate job definition - measure CPU
versus available resources - send heartbeat 1o server

Benchmark

Internal Flow of the Jobs Objects

validate o extract
Valid jobs Payload

validate

request
Valid payload

copytool | run_payload

Finished payload Failed paytoad

' fai[

= Job objects are kept in a job queue and are handled by
the different pilot components

10

Component model update

® Extended monitoring

= Pilot monitoring of internal

threads
= Job monitor

x [hread lives and dies
with payload

Heartbeats

Size measurements
Looping jobs

Proxy lifetime

Pilot running time

User (“experiment’)
Specific services

= Benchmark reports
= Nemory monitoring

Workflow
AN

Z N

| Node Control

AN

Payload Control

0N

11

Pllot 2 APIS

= Some Pilot functionality is exposed to external users by APIs; currently being planned
for, or Is already available

x Data APl
x Basic stage-in/out already used by Harvester
x New request: asynchronous stage-in/out
x Communicator API
» Functions for communicating with PanDA server, Harvester
x APl defined; contains functions for downloads/updates of job sand event ranges
= Environment AP
x |nterface to the jolb execution environment on HPCs
= Services AP

x Possible new APl which could expose functionalities related to
services run by the pilot (being discussed), see later slides

x Container API

12

Utllities

» Pilot 1 has hundreds of major and minor functions
= A large part of Pilot 2 development is to re-implement many of these
= Pilot 2 has utilities organized in dedicated util/ folder
= Current code base include functions in multiple modules
x [£.g. constants, disk; filehandling, https, information, ..
» Preliminary information module presents interface to AGIS and schedconfig

= To be replaced by a full Information Service component (where AGIS/
schedconfig are not hardcoded but accessed via user code)

= Development to start as soon as possible
= Pilot 2 now supports standard configuration files

x Config files are shipped with pilot source (default values), but can be
preplaced either in /etc or in init directory

13

MiniPilot

= A minimal pilot has been developed by
Daniel Drizhuk (Kurchatov Inst)

= [0 be used by the developers

primarily during the initial development m
and testing stage run :
» For module and component testing parse arguments
get queuedata —

= Can eventually result in a SimplePilot |

for external use / starting point for get job Job

new PanDA users

= Documentation/instructions in GitHub — stage in B download
hitps://github.com/PanDAWMS/pilot-2.0/
tree/dev/lib/minipilot

= Easy to use by design
= Using proper/standard [python] logging
= Following coding conventions

» Enforced by testing framework

cleanup

https://github.com/PanDAWMS/pilot-2.0/tree/dev/lib/minipilot
https://github.com/PanDAWMS/pilot-2.0/tree/dev/lib/minipilot

Code validation and
documentation

x Pilot 2 GitHub is using TravisCl for automatic code verification/validation
and unit tests

x GitHub pull request into Pilot 2 repo triggers external service (runs
pep8, flake8 and unit tests)

®x Semi-automatic code documentation using Sphinx
x Module to be documented must be accompanied by related sphinx
file
» Pull request followed by [currently] local sphinx script execution which
builds the documentation
= Qutput needs to be moved to www server

x |nvestigating of possibility of hosting of documentation in GitHulb domain

15

4
D
/
J
J
J
®
®
J

o,
)
9
)
o
o
o
°
°
°
°
o
o
°
®
o
°
°
o
°
o
o
D
ogs.
D
o
D
o
°
)
©
J
)J
®
®
J
2

9,
o)
=3
J

)
16

000000000000 { 0 000000000900
w/J))))))J))%f%ﬂxﬂﬁﬂﬁﬁﬁw O ‘Qﬁﬁymxﬁﬁxxﬁﬂfﬁﬂﬂf)J)J)JJJJ)Jw),,
)0/010)0/00/0/000/00000000000 @ 0 ©©0000000000000000000000000000
0/0/0/0/0/0/0/0/0/00000000 0000 O 00000 ©00000000000000000000000
)0000 0000000000000 0000000 0000000000000000000000000
00/0/0/0/0/0/0/0/00000000 JOX 0000000000) ©000000000000000000000000
NSO 7)

00000000))

00000000

YOO

J)J¢ﬂwwmﬂ

YOOOO0OOO0)

09000000

HWQVV@VQO

0000000

00000000

)/0/0/00000

00000000

0000000

00000000

wﬁ@ﬁ@@%

uﬂwmwwmy

)0 00000000

OO0000000)

/01000000 0. y
0000000000

YOOO000000)

wﬁﬁﬁﬁw OO

00 X

DO

0)
y$ﬂﬂﬂ9 ﬂ“ 000000
YOOOO00000 ©000.0/0
lolelelelele 00 o'00:0/0i0l0)
soie0000e 00000
010000000 0.0
01010000000 20100
000 X 00000
lelelele e e e oo lel0 00
JJQ%%y?SH AARNANA

) 00000000 000000
P, SISttt
000000000 ©0000000!
w@ﬂﬁ% 0 %ﬁﬂﬂﬂﬂwJ
OO0 X 00000010
JJJQQU,FS 00000008
ﬂﬂﬂﬂy 25557 0000100010l
)0 0/00 0000 000000000
lolelelo o0 0000 Yo 00000 00 0]
0010000000t 000000000

JJJ
L)
ogo
oge
%
)

000 6000
JJQQOQQ Q@ﬁﬁvy)))//
0/0/0/0/0/0/0/000000000000000000000000000000000000008 ... - - 0000000000
/0000000 © 00000000000
00000000 90000000000
)00000000 0000000000
0000000 0000000000
)0/0/00 000 \WJJJJQﬂﬂbﬂC
Oﬂﬁﬁﬁﬁﬂwu \ﬁﬂﬁﬂf)J)))
000000000 000000000
)[0/0/0/00000 © 0000000000
010100100000 0.« Q%JJJ)J))J
Vooe0000000 000000000
Jjbbbbﬁmﬁo \M%ﬂﬂﬂﬂﬁfjj
9000000000 000000000
)0/0/00000 000000000
000000000 00000000
)/9100/9/0/000.0. 00000000
9/0/0/0/0.000 0 000000000
)00/00000 000 ,QVJJJ))))
010/0/0/0000000 nwo 0000000
T e e e o 0000000
e c0 0000000
oo oo e o e \mwmwwwwwwwwwﬂxJ
,quOﬁOﬂJJJJJ Q@@Qﬁﬁﬂﬂ
1010/0/0/0/0/0.00.00 © 0000000
eielo0000 0000000 ©© 0000000
Slole o0 o0 e e e o c‘wwwwmmﬂﬂﬂ
910000 v OO0
010000000000 © A%ﬂﬂﬂfJ)
10101000000 00000000000
910101010/010/00000006000 o‘,QQJJJJ))\
10101010:0/0.0/0.0.0.0 0 ® %ﬁ%ﬂxﬂﬂu
10100000000 00000000
)oleeel00e00 000 2000000004
0100000000 0000000000
0/00/0/0/00/0000000000 Qﬁﬁﬂﬂﬂﬂﬂﬂ
00000000000
@ 00000
i.uﬂmﬂygaj)
D[0.0000000

3§
ﬁﬁ
_) \"

82658
88e%s%s
)ﬁﬁiiﬁﬁﬁﬁ
9. 9.9 ®

\

333333
e%e%0®.
<<
8208
8000
52
IS

&>

OO0

10000/0/0/0/000000 00000060004 X 00000000000
)0000000000000000000000000)0 X 0000000 ee0eeeeeeee
100000000000000000000000d0eee 00000 000000000!

) 00000 0000000000000 | 0eeeee 00000000
) 000.09000000000 a 9000 7 y7
ool e e e e e e 6 6 0/l 000 0l0 0 0 0 00000)
0I0101000/0/0/0000000000000000 QV

Harvester design key points

= Lightweight
x [0 run on logon/edge nodes at HPC centres

x Stateless for scalability + central database (oracle) +
local database (sqlite3)

= Capability to rebuild the local database from the central database
for auto restart

» | ocal database to reduce redundant access to the central
database

x Only important checkpoints are propagated to the central database
= |nstallation with or without root privilege
= Configurability

x [0 customize workflow for each resource

= Jo turn on/off components with various plugins

17

Harvester design key points

= Running on top of pilot API

x Core + plugins + resource Specifics In resource
managers or pilot components
® | everaging development effort for the pilot
consistently with the evolution plan (pilot 2.0)
= Direct bi-directional communication with PanDA

®x Reqguesting workload to PanDA based on dynamic
resource availability information and static
configuration

®x Recelving commands directly from PanDA to throttle
or boost the number of workers (worker = pilot, MPI
job, or VM)

18

Constraints for Workload Management on
HPC

= Preemptable or very short walltime limit
= [0 shorten the execution time of jobs
x Decreasing the number of events per job, and/or
x |[ncreasing the number of GPU cores per job
= Or to enable event-level bookkeeping (event service)

= Limitation on humber of concurrent workers in the batch system

= [0 increase the number of CPU cores per worker
x Combining multiple jobs to a single payload which is given to a worker (multi-
job or ManyToOne)
x [ncreasing the number of events per job (jumbo job)
x No outbound network connectivities on compute nodes
= Edge service on edge node to mediate communication between PandDA and
workers
» Long waiting time in the batch queue

= [0 assign only low priority jobs
= Or to enable parallel event consumption on pledged resources

19

Constraints for Workload Management on
HPC

= [ntermittent and/or spiky resource availability

® [0 send “fake” pilot reguests from edge service
(get_job reqguests for job pre-fetching or update_job
requests for jobs in stating state)

® Or to request jobs before resources become
available (proactive workload assignment)

20

Workflows 1/4 : Push+ True Pilot

= Prefetches jobs, submits workers(pilots)+jobs to the batch
system, and lets workers communicate with panda once
they get CPUs

= Advantages

= [Fasy to send get_job requests without empty workers to attract jolbs before
the resource becomes avallable

x A pool of prefetched jobs as a buffer for fluctuated CPU availability
x Automatic throttling of worker submission in case of no jolbs
= A well matured workflow in ATLAS as it has been used for some grid sites
for a long time
= Caveats

= Requires less restrictive operation policy

x Qutbound network connection on compute nodes, many batch workers
running in parallel, long walltime limit with allocation

= High priority jolbs cannot get the first available CPUs

21

Workflows 2/4 : ManyloOne

= Prefetches multiple jobs, combines them into a single payload, and
submits the payload to the batch system

= No MPI : one job per rank/node
= Essentially the same as “multi-job pilot”

= One major difference is that jobs are prefetched and input files are
asynchronously pre-staged before CPU slots become available, while multi-
job pilot fetches jobs and stages input files once free CPU slots are founad

= Advantage
= [he number of concurrent workers in the batch system can be reduced

x Caveats

= Needs jobs with similar execution time so that all jobs in the same worker
finish simultaneously to avoid having idle nodes

x [£.0., jobs from the same task or request. Cannot accept jobs from
random tasks — Gustom tasks

= Or needs to enable event service
= \\Vhen the first job finishes all the rest could be killed

22

Workflows 3/4 : Jumbo Jobs

= One single huge event set (jumbo job) including all events from one task

= A huge event set + event-level bookkeeping allows a big batch worker to process events at
HPCs as much as possible

= Multiple jumbo jobs per task to be assigned to different HPCs
= Don’t have to estimate optimal event sizes for each HPC

= The huge event set is partitioned at the same time to small event sets (co-
jumbo jobs)

= [hey are good to be processed by small batch workers at pledged resources

x Workers for jumbo and co-jumbo jobs compete to grab events
= EFach event is exclusively processed by one worker

= Fvents are being consumed at pledged resources even if big workers are waiting in long HPC
batch gueues

Task

S E—n

Workers on Worker on HPC
pledged resources

Workflows 4/4 : Multi Workers

» Many workers contributing to the same job

= Typical use-case : Jumbo jobs + small workers
= Single node workers
» Small MPI workers with backfill mode

= Job and file records for each jumbo job are huge in the database
x Not good to have one jumbo job for each small worker

= One standard job is processed by many CPU cores — One MPI job is processed
by many compute nodes — One jumbo job could be processed by many workers

= \Norkers don’t have to pop-up simultaneously = Workload sharing with asynchronous
workers without node-boundaries

Jumbo job Standard job
+ 4 workers + 4 core node

Evem‘s Y \ \ AN ‘ ! \ AN Events

Worker 1 CPU core 1

a single node worker or

a small MPT worker with multiple nodes 24

Current status of Harvester on HPC

x Core components of Harvester were deployed on
major US HPGC facilities; ALCFE, OLCE, NERSC

® Fach facility has its own policies of usage and stack
of services and middleware

x Ongoing process for development of specific plugins
and tuning of workflows

25

Conclusions

®x PanDA has performed well for ATLAS In the last

d

ecade including the LHC Run 1 and Run 2 data

taking periods

x New challenges to come while steadily running for LHC
Run 2

= New components and features have been adressed

a
P

nd implementation with continous integration in

0gress

26

