
Optimizing new components of PanDA for ATLAS
production on HPC resources
Tadashi Maeno, Fernando Barreiro, Paul Nilsson, Danila Oleynik on behalf of the ATLAS Collaboration

PanDA Workload Management System
The PanDA workload management system was developed for the ATLAS experiment at
the Large Hadron Collider
A new approach to distributed computing

A huge hierarchy of computing centres and opportunistic resources working together
Main challenge – how to provide efficient automated performance
Auxiliary challenge – make resources easily accessible to all users

Core ideas :
 Make hundreds of distributed sites appear as local

Provide a central queue for users – similar to local batch systems
Reduce site related errors and reduce latency

Build a pilot job system – late transfer of user payloads
Crucial for distributed infrastructure maintained by local experts

Hide middleware while supporting diversity and evolution
PanDA interacts with middleware – users see high level workflow

Hide variations in infrastructure
PanDA presents uniform ‘job’ slots to user (with minimal sub-types)
Easy to integrate grid sites, clouds, HPC sites …

Data processing, Production and Analysis users see same PanDA system
Same set of distributed resources available to all users

Highly flexible – instantaneous control of global priorities by experiment

2

PanDA Brief Story
2005: Initiated for US ATLAS (BNL and UTA)
2006: Support for analysis
2008: Adopted ATLAS-wide
2009: First use beyond ATLAS
2011: Dynamic data caching based on usage
and demand
2012: ASCR/HEP BigPanDA project
2014: Network-aware brokerage
2014: Job Execution and Definition I/F (JEDI)
adds complex task management and fine
grained dynamic job management
2014: JEDI-based Event Service
2014: megaPanDA project supported by RF
Ministry of Science and Education
2015: New ATLAS Production System, based on
PanDA/JEDI
2015: Manage Heterogeneous Computing
Resources
2016: DOE ASCR BigPanDA@Titan project
2016: PanDA for bioinformatics
2016: COMPASS adopted PanDA (JINR, CERN,
NRC-KI), PanDA beyond HEP : LSST, BlueBrain

3

PanDA
Pilot based job execution system

Pilot manages job execution on local resources, as well as data movement for the job
Payload is sent only after pilot execution begins on Compute Element

Minimize latency, reduce error rates

4

Motivation for new PanDA Pilot
Some of the Pilot 1.0 code base is getting a bit too old and is difficult to
maintain

Refactoring is a slow process that has already been going on for years and
does not always have highest priority
More manpower made available to alleviate a steady increase of feature
requests
New features/workflows are often challenging to implement/support

“Complete” rewrite
Keeping some recent new developments (not cut-and-paste)
Getting rid of all legacy code and outdated mechanisms
Rethink of basic pilot flow

New PanDA Pilot Project launched in April 2016
Project to span the next few years
Development and support of the old pilot (“Pilot 1.0”) will continue as it
remains the production pilot until new pilot (“Pilot 2.0”) is ready

5

Motivation for Harvester
PanDA currently relies on server-pilot paradigm

PanDA server maintains state and manages workflows with various
granularities, such as task, job, and event – Pilots are job-centric and
independently run on worker nodes with limited view of local resource

Works well for the grid with 250k cores 24x7 as underlying resources are not
very heterogeneous

But missing capability to dynamically optimize resource allocation among
differences of architectures (limitations by number of cores, amount of RAM
per core, limitations of wall time etc.)

Not very well for HPC or large-scale clouds
Each HPC has a different edge service and operational policy, leading to
over-stretched pilot architecture and incoherence in implementation at
different HPCs
PanDA itself has no means of managing and monitoring cloud utilization by
using native cloud API which is far more optimal than that of an
intermediate service like condor

6

Motivation for Harvester
New model : server-harvester-pilot

Harvester is a resource-facing service between PanDA server
and collection of pilots
Stateless service with knowledge of resource
Modular design for different resource types
Many harvester instances running in parallel
To provide a single view of a large or uniform resource that
optimizes pilot and/or workload management
To provide a commonality layer in bringing coherence to HPC
implementations
Better integration with PanDA system for various (new)
workflows, such as job/event-level late-binding and jumbo jobs

7

Pilot 2.0 Key features

8

Component model

9

Internal Flow of the Jobs Objects

Job objects are kept in a job queue and are handled by
the different pilot components

10

Component model update
Extended monitoring

Pilot monitoring of internal
threads
Job monitor

Thread lives and dies
with payload

Heartbeats
Size measurements
Looping jobs
Proxy lifetime
Pilot running time
User (“experiment”)
specific services

 Benchmark reports
Memory monitoring

11

Pilot 2 APIs
Some Pilot functionality is exposed to external users by APIs; currently being planned
for, or is already available

Data API
Basic stage-in/out already used by Harvester
New request: asynchronous stage-in/out

Communicator API
Functions for communicating with PanDA server, Harvester
API defined; contains functions for downloads/updates of job sand event ranges

 Environment API
Interface to the job execution environment on HPCs

Services API
Possible new API which could expose functionalities related to  
services run by the pilot (being discussed), see later slides

Container API 

12

Utilities
Pilot 1 has hundreds of major and minor functions

A large part of Pilot 2 development is to re-implement many of these
Pilot 2 has utilities organized in dedicated util/ folder

Current code base include functions in multiple modules
E.g. constants, disk, filehandling, https, information, ..
Preliminary information module presents interface to AGIS and schedconfig

To be replaced by a full Information Service component (where AGIS/
schedconfig are not hardcoded but accessed via user code)
Development to start as soon as possible

Pilot 2 now supports standard configuration files
Config files are shipped with pilot source (default values), but can be
preplaced either in /etc or in init directory

13

MiniPilot
A minimal pilot has been developed by
Daniel Drizhuk (Kurchatov Inst.)

To be used by the developers
primarily during the initial development
and testing stage
For module and component testing
Can eventually result in a SimplePilot
for external use / starting point for
new PanDA users

Documentation/instructions in GitHub –
https://github.com/PanDAWMS/pilot-2.0/
tree/dev/lib/minipilot
Easy to use by design
Using proper/standard [python] logging
Following coding conventions

Enforced by testing framework

14

https://github.com/PanDAWMS/pilot-2.0/tree/dev/lib/minipilot
https://github.com/PanDAWMS/pilot-2.0/tree/dev/lib/minipilot

Code validation and
documentation

Pilot 2 GitHub is using TravisCI for automatic code verification/validation
and unit tests

GitHub pull request into Pilot 2 repo triggers external service (runs
pep8, flake8 and unit tests)

Semi-automatic code documentation using Sphinx
Module to be documented must be accompanied by related sphinx
file
Pull request followed by [currently] local sphinx script execution which
builds the documentation
Output needs to be moved to www server

Investigating of possibility of hosting of documentation in GitHub domain

15

Harvester for HPC

16

Harvester design key points
Lightweight

To run on logon/edge nodes at HPC centres
Stateless for scalability + central database (oracle) +
local database (sqlite3)

Capability to rebuild the local database from the central database
for auto restart
Local database to reduce redundant access to the central
database
Only important checkpoints are propagated to the central database

Installation with or without root privilege
Configurability

To customize workflow for each resource
To turn on/off components with various plugins

17

Harvester design key points
Running on top of pilot API

Core + plugins + resource specifics in resource
managers or pilot components
Leveraging development effort for the pilot
consistently with the evolution plan (pilot 2.0)

Direct bi-directional communication with PanDA
Requesting workload to PanDA based on dynamic
resource availability information and static
configuration
Receiving commands directly from PanDA to throttle
or boost the number of workers (worker = pilot, MPI
job, or VM)

18

Constraints for Workload Management on
HPC

Preemptable or very short walltime limit
To shorten the execution time of jobs

Decreasing the number of events per job, and/or
Increasing the number of CPU cores per job

Or to enable event-level bookkeeping (event service)
Limitation on number of concurrent workers in the batch system

To increase the number of CPU cores per worker
Combining multiple jobs to a single payload which is given to a worker (multi-
job or ManyToOne)
Increasing the number of events per job (jumbo job)

No outbound network connectivities on compute nodes
Edge service on edge node to mediate communication between PandDA and
workers

Long waiting time in the batch queue
To assign only low priority jobs
Or to enable parallel event consumption on pledged resources

19

Constraints for Workload Management on
HPC

Intermittent and/or spiky resource availability
To send “fake” pilot requests from edge service
(get_job requests for job pre-fetching or update_job
requests for jobs in stating state)
Or to request jobs before resources become
available (proactive workload assignment)

20

Workflows 1/4 : Push+True Pilot
Prefetches jobs, submits workers(pilots)+jobs to the batch
system, and lets workers communicate with panda once
they get CPUs
Advantages

Easy to send get_job requests without empty workers to attract jobs before
the resource becomes available

A pool of prefetched jobs as a buffer for fluctuated CPU availability
Automatic throttling of worker submission in case of no jobs

A well matured workflow in ATLAS as it has been used for some grid sites
for a long time

Caveats
Requires less restrictive operation policy

Outbound network connection on compute nodes, many batch workers
running in parallel, long walltime limit with allocation

High priority jobs cannot get the first available CPUs

21

Workflows 2/4 : ManyToOne
Prefetches multiple jobs, combines them into a single payload, and
submits the payload to the batch system
No MPI : one job per rank/node
Essentially the same as “multi-job pilot”

One major difference is that jobs are prefetched and input files are
asynchronously pre-staged before CPU slots become available, while multi-
job pilot fetches jobs and stages input files once free CPU slots are found

Advantage
The number of concurrent workers in the batch system can be reduced

Caveats
Needs jobs with similar execution time so that all jobs in the same worker
finish simultaneously to avoid having idle nodes

E.g., jobs from the same task or request. Cannot accept jobs from
random tasks → Custom tasks

Or needs to enable event service
When the first job finishes all the rest could be killed

22

Workflows 3/4 : Jumbo Jobs
One single huge event set (jumbo job) including all events from one task

A huge event set + event-level bookkeeping allows a big batch worker to process events at
HPCs as much as possible
Multiple jumbo jobs per task to be assigned to different HPCs
Don’t have to estimate optimal event sizes for each HPC

The huge event set is partitioned at the same time to small event sets (co-
jumbo jobs)

They are good to be processed by small batch workers at pledged resources
Workers for jumbo and co-jumbo jobs compete to grab events

Each event is exclusively processed by one worker
Events are being consumed at pledged resources even if big workers are waiting in long HPC
batch queues

23

Workflows 4/4 : Multi Workers
Many workers contributing to the same job
Typical use-case : Jumbo jobs + small workers

Single node workers
Small MPI workers with backfill mode

Job and file records for each jumbo job are huge in the database
Not good to have one jumbo job for each small worker

One standard job is processed by many CPU cores → One MPI job is processed
by many compute nodes → One jumbo job could be processed by many workers

Workers don’t have to pop-up simultaneously → Workload sharing with asynchronous
workers without node-boundaries

24

Current status of Harvester on HPC
Core components of Harvester were deployed on
major US HPC facilities: ALCF, OLCF, NERSC

Each facility has its own policies of usage and stack
of services and middleware

Ongoing process for development of specific plugins
and tuning of workflows

25

Conclusions
PanDA has performed well for ATLAS in the last
decade including the LHC Run 1 and Run 2 data
taking periods

New challenges to come while steadily running for LHC
Run 2

New components and features have been adressed
and implementation with continous integration in
progress

26

