Update on dielectron studies in $\mathbf{B i B i @ 9 . 4 6}$

V. Riabov

Outline

- Status of new production
- PHSD vs. UrQMD for dielectron input, signal significance
- TOF ePID with tighter matching cut

New production

New Monte-Carlo request

- New Monte Carlo request has been submitted a while ago
- Aims at dielectron studies but good for most of other analyses
- Recently, the request was reformatted to account for the latest advancements in 'mpdroot', https://mpdforum.jinr.ru/t/request5-pwg4-dielectrons-in-bibi-9-46/235
- Features:
\checkmark collision system - BiBi@9.46, most probable first beams
\checkmark fixed problem with zero width of resonances in Geant4, unstable particles are now decayed by Pythia8, including Dalitz decays of ω (was missing in Pythia6 before)
$\checkmark \pi^{0}$ and η are decayed by Pythia8 to solve the problem of Dalitz decays of η in Geant, these particles are now treated as unstable particles
\checkmark LVM decays to $\mathrm{e}^{+} \mathrm{e}^{-}$are enhanced by x 20 for smaller fluctuations
\checkmark production is still usable for most of general purpose analyses
- Remaining issues:
\checkmark None, so far ...
- Production status:
\checkmark centralized production is in progress ...
$\checkmark 2.5 \mathrm{M}$ are already awailable at NICA cluster, /eos/nica/mpd/sim/data/exp/dst-BiBi-9.5GeV-mp07-20-pwg4-250ev/BiBi/09.5GeV-mb/UrQMD/BiBi-9.5GeV-mp07-20-pwg4-250ev-1

PHSD vs. UrQMD vs. ...

(BiBi@9.46)

Simulated signals for dielectron studies

- Just a few event generators can simulate di-electron signals:
\checkmark UrQMD with reweighting and extra steps/efforts (see previous presentations)
\checkmark PHSD as a guideline for the simulated signals, M_{ee} continuum which can not be injected directly
\checkmark PLUTO, input from Sudhir
\checkmark private input ???

Generated dielectron continuum: UrQMD vs. PHSD

- M_{ee} distributions, $\mathrm{BiBi} @ 9.46, \sim 2.5 \mathrm{M}$ events (new production)

- Reasonable overall agreement for most of the M_{ee} range
- Obvious disagreement in the $\rho(770)$ mass region, the disagreement is larger than that with Pythia6

Cocktail contributions: UrQMD vs. PHSD

- M_{ee} distributions, $\mathrm{BiBi} @ 9.46, \sim 2.5 \mathrm{M}$ events (new production)

- Shapes are similar for π^{0} and η Dalitz decays, ϕ decays
- Different shapes for ω Dalitz decays in Pythia8 and PHSD
- Very different shapes for $\rho \rightarrow$ ee decays

$\rho(770) \rightarrow$ ee contributions: UrQMD vs. PHSD

- M_{ee} distributions for $\rho(770), \mathrm{BiBi} @ 9.46, \sim 2.5 \mathrm{M}$ events (new production)

- Pyhtia8 decays $\rho(770)$ by rBW with Γ-parameter depending on mass $(\mathrm{J}=1)$:
$\operatorname{rBW}\left(M_{\pi \pi}\right)=\frac{A M_{\pi \pi} M_{0} \Gamma\left(M_{\pi \pi}\right)}{\left(M_{0}^{2}-M_{\pi \pi}^{2}\right)^{2}+M_{0}^{2} \Gamma^{2}\left(M_{\pi \pi}\right)} \quad \Gamma\left(M_{\pi \pi}\right)=\left(\frac{M_{\pi \pi}^{2}-4 m_{\pi}^{2}}{M_{0}^{2}-4 m_{\pi}^{2}}\right)^{(2+1) / 2} \times \Gamma_{0} \times M_{0} / M_{\pi \pi}$
- Pyhtia6 decays $\rho(770)$ by $r B W$ with fixed Γ-parameter, $\Gamma \equiv \Gamma_{0}$
- PHSD smears $\rho(770)$ to account for R.Rapp-like spectral shape modification. Similar shape modifications were observed in $\rho \rightarrow \pi \pi$ production in dense systems and in $\rho(770)$ photoproduction

Simulations with PHSD input

- $\mathrm{BiBi} @ 9.46, \sim 2.5 \mathrm{M}$ events (new production)
- The UrQMD production can be rescaled to PHSD input:
\checkmark origin of each generated and reconstructed track is known in simulations
\checkmark each $\mathrm{e}^{+} \mathrm{e}^{-}$pair in generated/reconstructed M_{ee} spectrum is reweighted by parentID_ $\mathrm{e}^{ \pm}$and parentMass_e ${ }^{ \pm}$- dependent weight:
weight $=$ Weight $\left(\right.$ parentID_ e^{+}, parentMass_e $\left.{ }^{+}\right) \mathrm{x}$ Weight(parentID_e ${ }^{-}$, parentMass_e-),
where: parentID $=\pi^{0}, \eta, \rho, \omega, \phi$ etc.
parentMass is a generated mass of $\pi^{0}, \eta, \rho, \omega, \phi$ etc.
\checkmark by construction, the procedure reweights as signals (e+e ${ }^{-}$pairs from $\pi^{0}, \eta, \rho, \omega, \phi$ etc.) as background $\mathrm{e}^{+} \mathrm{e}^{-}$pairs, for example from $\mathrm{e}^{+}\left(\right.$from π^{0} Dalitz)e-(from ω) etc., each generated and reconstructed $\mathrm{e}^{ \pm}$track has its own weight based on its origin and parent particle mass

Rescaled generated \mathbf{M}_{ee} distributions

- M_{ee} distributions, $\mathrm{BiBi} @ 9.46, \sim 2.5 \mathrm{M}$ events (new production)

- Shapes and integrals of generated signals (rescaled UrQMD) are now consistent with PHSD input

Rescaled reconstructed \mathbf{M}_{ee} distributions

- M_{ee} distributions, $\mathrm{BiBi} @ 9.46, \sim 2.5 \mathrm{M}$ events (new production)
- Reconstructed signals after rescaling

- Reweighting to PHSD input changes the signal significance:
$\checkmark \omega$ peak significance: $2.36 \rightarrow 2.62$
$\checkmark \phi$ peak significance: $0.95 \rightarrow 0.95$
\checkmark S/B in mass region [0.2-1.5] GeV/c${ }^{2}: 0.014 \rightarrow 0.021$ due to $\sim 20 \%$ smaller yield of π^{0} and $\sim 50 \%$ larger yield of $\rho(770)$ in PHSD

Status \& conclusions

- Large $\mathrm{BiBi} @ 9.46$ production is in progress, 2.5 M events (~25\%) are already available
- Procedure for reweighting of simulated dielectron input (UrQMD by default) is developed and tested
- Some small issues with reweighting should be polished out, need full statics of the centralized BiBi@9.46 production
- PHSD input provides better S/B compared to UrQMD predictions
- PLUTO is to be tested once input is provided ...

TOF eID

Problem of TOF-TPC track mismatching

- Both STAR and MPD observe non-physical TOF signals with $\beta>1$,
- Unphysical signals are most prominent in central collisions, diminished in peripheral
- Effect is explained by track mismatching in the TOF

Problem of TOF-TPC track mismatching

- High probability of track mismatching in the TOF prevents reliable identification of electrons at intermediate momenta \rightarrow previously observed electron purity is not as high as in STAR (see previous presentations)
- Little control over the matching parameters in 'mpdroot'
- The only available parameters are:
\checkmark track quality (number of hits, rapidity cut, matching to primary vertex etc.)
\checkmark MpdTofMatchingData::GetWeight(), where: weight $=1 . /($ estPointOnPlate $-\operatorname{hitPosition)} . \operatorname{Mag}() ;$
- Track quality cuts (within some reasonable limits: $n H i t s>20-40, \mathrm{DCA}<1-3 \sigma,|\mathrm{y}|<0.5-1$) do not noticeably improve the situation with track mismatching in the TOF
- Matching parameter is quite useful

Matching distributions vs. \mathbf{p}_{T}

- Track-to-hit distance in the TOF (or 1/weight) vs. p_{T}, minbias $\mathrm{BiBi} @ 9.46$

- Matching distributions are quite wide (too wide ???)

Electron track reconstruction efficiency vs. p_{T}

- eID with noPID, TPC\&TOF and TPC\&TOF \&EMC
\checkmark Default matching

$\checkmark \mid$ dist $\mid<2 \mathrm{~cm}$

- Tighter matching cut ($<2 \mathrm{~cm}$) only slightly reduces the electron efficiency at $\mathrm{p}_{\mathrm{T}}<200 \mathrm{MeV} / \mathrm{c}$ - Yet it reduces pion efficiency by a factor of $\sim 2-3$ with eID cuts at $\mathrm{p}_{\mathrm{T}}<400 \mathrm{MeV} / \mathrm{c}$

dE/dx selections with 2σ eID TOF cut

STAR, AuAu@200

MPD, BiBi@9.46

- Tighter matching (\mid dist $\mid<2 \mathrm{~cm}$) cut:
\checkmark suppresses the grass and the $\beta>1$ tail
\checkmark significantly improves e/ π and probably π / K separation

Electron purity

- $\mathrm{BiBi} @ 9.46, \sim 2.5 \mathrm{M}$ events (new production)

TPC \& TOF

TPC \&\& TOF

TPC \&\& TOF

Summary for tighter matching cut

- $\mathrm{BiBi} @ 9.46, \sim 2.5 \mathrm{M}$ events (new production)
- noID, TPC\&TOF or TPC\&TOF\&ECAL eID selection + beta cut + |dist $\mid<2 \mathrm{~cm}$

STAR: single electron efficiency at $\mathrm{p}_{\mathrm{T}}>200 \mathrm{MeV} / \mathrm{c}$ is $30-40 \%$

- Achieved purity \& efficiency with TPC\&TOF eID are comparable/better to STAR
- Tight matching cut makes eID by TPC\&TOF quite sufficient for eID

First look at \mathbf{M}_{ee}

- $\mathrm{BiBi} @ 9.46, \sim 2.5 \mathrm{M}$ events (new production)

$\checkmark \mathrm{p}_{\mathrm{T}}>0.5 \mathrm{GeV} / \mathrm{c}$

- Smaller hadron contamination, better S / B ratios, the higher the p_{T} the larger the gain
- Tighter matching cut is important for dielectron studies

