Update on dielectron studies in BiBi@9.46

V. Riabov

Outline

- Status of new production
- PHSD vs. UrQMD for dielectron input, signal significance
- TOF ePID with tighter matching cut

New production

New Monte-Carlo request

- New Monte Carlo request has been submitted a while ago
- Aims at dielectron studies but good for most of other analyses
- Recently, the request was reformatted to account for the latest advancements in 'mpdroot', <u>https://mpdforum.jinr.ru/t/request5-pwg4-dielectrons-in-bibi-9-46/235</u>
- Features:
 - ✓ collision system BiBi@9.46, most probable first beams
 - ✓ fixed problem with zero width of resonances in Geant4, unstable particles are now decayed by Pythia8, including Dalitz decays of ω (was missing in Pythia6 before)
 - ✓ $π^0$ and η are decayed by Pythia8 to solve the problem of Dalitz decays of η in Geant, these particles are now treated as unstable particles
 - ✓ LVM decays to e^+e^- are enhanced by x20 for smaller fluctuations
 - \checkmark production is still usable for most of general purpose analyses
- Remaining issues:
 - ✓ None, so far ...
- Production status:
 - ✓ centralized production is in progress ...
 - ✓ 2.5M are already awailable at NICA cluster, /eos/nica/mpd/sim/data/exp/dst-BiBi-9.5GeV-mp07-20-pwg4-250ev/BiBi/09.5GeV-mb/UrQMD/BiBi-9.5GeV-mp07-20-pwg4-250ev-1

PHSD vs. UrQMD vs. ... (BiBi@9.46)

Simulated signals for dielectron studies

- Just a few event generators can simulate di-electron signals:
 - ✓ UrQMD with reweighting and extra steps/efforts (see previous presentations)
 - ✓ PHSD as a guideline for the simulated signals, M_{ee} continuum which can not be injected directly
 - ✓ PLUTO, input from Sudhir
 - ✓ private input ???

Generated dielectron continuum: UrQMD vs. PHSD

• M_{ee} distributions, BiBi@9.46, ~ 2.5 M events (new production)

- Reasonable overall agreement for most of the M_{ee} range
- Obvious disagreement in the $\rho(770)$ mass region, the disagreement is larger than that with Pythia6

Cocktail contributions: UrQMD vs. PHSD

• M_{ee} distributions, BiBi@9.46, ~ 2.5 M events (new production)

- Shapes are similar for π^0 and η Dalitz decays, ϕ decays
- Different shapes for ω Dalitz decays in Pythia8 and PHSD
- Very different shapes for $\rho \rightarrow ee$ decays

$\rho(770) \rightarrow ee$ contributions: UrQMD vs. PHSD

• M_{ee} distributions for $\rho(770)$, BiBi@9.46, ~ 2.5 M events (new production)

• Pyhtia8 decays $\rho(770)$ by rBW with Γ -parameter depending on mass (J = 1): rBW $(M_{\pi\pi}) = \frac{AM_{\pi\pi}M_0\Gamma(M_{\pi\pi})}{(M_0^2 - M_{\pi\pi}^2)^2 + M_0^2\Gamma^2(M_{\pi\pi})}$ $\Gamma(M_{\pi\pi}) = \left(\frac{M_{\pi\pi}^2 - 4m_{\pi}^2}{M_0^2 - 4m_{\pi}^2}\right)^{(2J+1)/2} \times \Gamma_0 \times M_0/M_{\pi\pi}$

- Pyhtia6 decays $\rho(770)$ by rBW with fixed Γ -parameter, $\Gamma \equiv \Gamma_0$
- PHSD smears $\rho(770)$ to account for R.Rapp-like spectral shape modification. Similar shape modifications were observed in $\rho \rightarrow \pi\pi$ production in dense systems and in $\rho(770)$ photoproduction V. Riabov, PWG4-ECAL Meeting, 27.08.2020

Simulations with PHSD input

- BiBi@9.46, ~ 2.5 M events (new production)
- The UrQMD production can be rescaled to PHSD input:
 - \checkmark origin of each generated and reconstructed track is known in simulations
 - ✓ each e⁺e⁻ pair in generated/reconstructed M_{ee} spectrum is reweighted by parentID_e[±] and parentMass_e[±] dependent weight:

weight = Weight(parentID_e⁺, parentMass_e⁺) x Weight(parentID_e⁻, parentMass_e⁻),

where: parentID = π^0 , η , ρ , ω , ϕ etc.

parentMass is a generated mass of π^0 , η , ρ , ω , ϕ etc.

✓ by construction, the procedure reweights as signals (e⁺e⁻ pairs from π^0 , η , ρ , ω , ϕ etc.) as background e⁺e⁻ pairs, for example from e⁺(from π^0 Dalitz)e⁻(from ω) etc., each generated and reconstructed e[±] track has its own weight based on its origin and parent particle mass

Rescaled generated M_{ee} distributions

• M_{ee} distributions, BiBi@9.46, ~ 2.5 M events (new production)

Shapes and integrals of generated signals (rescaled UrQMD) are now consistent with PHSD input

Rescaled reconstructed M_{ee} distributions

- M_{ee} distributions, BiBi@9.46, ~ 2.5 M events (new production)
- Reconstructed signals after rescaling

- Reweighting to PHSD input changes the signal significance:
 - ✓ ω peak significance: 2.36 → 2.62
 - ✓ ϕ peak significance: 0.95 → 0.95
 - ✓ S/B in mass region [0.2-1.5] GeV/c²: 0.014 → 0.021 due to ~20% smaller yield of π^0 and ~ 50% larger yield of $\rho(770)$ in PHSD

Status & conclusions

- Large BiBi@9.46production is in progress, 2.5 M events (~ 25%) are already available
- Procedure for reweighting of simulated dielectron input (UrQMD by default) is developed and tested
- Some small issues with reweighting should be polished out, need full statics of the centralized BiBi@9.46 production
- PHSD input provides better S/B compared to UrQMD predictions
- PLUTO is to be tested once input is provided ...

TOF eID

V. Riabov, PWG4-ECAL Meeting, 27.08.2020

Problem of TOF-TPC track mismatching

STAR

MPD

• Both STAR and MPD observe non-physical TOF signals with $\beta > 1$,

- Unphysical signals are most prominent in central collisions, diminished in peripheral
- Effect is explained by track mismatching in the TOF

Problem of TOF-TPC track mismatching

- High probability of track mismatching in the TOF prevents reliable identification of electrons at intermediate momenta → previously observed electron purity is not as high as in STAR (see previous presentations)
- Little control over the matching parameters in 'mpdroot'
- The only available parameters are:
 - ✓ track quality (number of hits, rapidity cut, matching to primary vertex etc.)
 - ✓ MpdTofMatchingData::GetWeight(), where: weight = 1./(estPointOnPlate hitPosition).Mag();
- Track quality cuts (within some reasonable limits: nHits > 20-40, DCA< 1-3 σ , |y| < 0.5-1) do not noticeably improve the situation with track mismatching in the TOF
- Matching parameter is quite useful

Matching distributions vs. p_T

• Track-to-hit distance in the TOF (or 1/weight) vs. p_T, minbias BiBi@9.46

• Matching distributions are quite wide (too wide ???)

Electron track reconstruction efficiency vs. p_T

- eID with **noPID**, **TPC&TOF** and **TPC&TOF&EMC**
 - ✓ Default matching

- Tighter matching cut (<2cm) only slightly reduces the electron efficiency at $p_T < 200 \text{ MeV/c}$
- Yet it reduces pion efficiency by a factor of ~ 2-3 with eID cuts at $p_T < 400 \text{ MeV/c}$

dE/dx selections with 2σ eID TOF cut

- Tighter matching (|dist| < 2cm) cut:
 - ✓ suppresses the grass and the $\beta > 1$ tail
 - ✓ significantly improves e/π and probably π/K separation

Electron purity

• BiBi@9.46, ~ 2.5 M events (new production)

Summary for tighter matching cut

1.2

- BiBi@9.46, ~ 2.5 M events (new production)
- noID, TPC&TOF or TPC&TOF&ECAL eID selection + beta cut + |dist| < 2cm

0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 1 p (GeV/c) 1.2 e purity Au + Au $\sqrt{s_{NN}} = 200 \text{ GeV}$ 0.8 0.6 **MinBias** 0.4 Central cross region 0.2 0.5 1.5 momentum (GeV/c)

 $\frac{d}{d}$ 1.4 + |dist| < 2cm + betacut

STAR: single electron efficiency at $p_T > 200 \text{ MeV/c}$ is 30-40%

- Achieved purity & efficiency with **TPC&TOF** eID are comparable/better to STAR
- Tight matching cut makes eID by **TPC&TOF** quite sufficient for eID

First look at M_{ee}

- BiBi@9.46, ~ 2.5 M events (new production)
 - \checkmark p_T integrated

- Smaller hadron contamination, better S/B ratios, the higher the p_T the larger the gain
- Tighter matching cut is important for dielectron studies