Update on analysis of beam-test results comparison v2 and v3 geometries

D.Peresunko NRC "Kurchatov institute"

Data analyzed

MC

Single electron simulation

direction $\eta=0$, $\phi=270^{\circ}$

- vertex just in front of center of

pt 290 MeV,

Data

- Kindly provided by Viacheslav Kulikov
- Electron beam 293 MeV
- Prototype 6*8 towers
- 14000 events

Choice of incidence position

MC simulations, geometry v3

Cross appears when cluster multiplicity is low and corresponds to the center of tower.

Choose incident position to have same distribution: electron primary vertex: (9.5, -168., 13.0)

Comparison of energy resolution

Beam-test: sum of energies of all towers in event with $E_i > 100 \text{ ADC}(1.43 \text{ MeV})$ $\sigma = 22.6 \text{ MeV}*$

MC, digits sum: sum of all energy depositions in event above threshold (1.4 MeV)

σ=18.1 MeV**

MC, clusters: standard clusterization applied. E_{min} =1.5 MeV, E_{seed} =10 MeV, Digits with common edges added to cluster, common vertex not sufficient. σ =21.1 MeV

*Fit with Gaus in range 0.22-0.35 **MC calibration fixed to reproduce mean

Some electronic noise/digitization/... should be added to MC. To check energy dependence of resolution, BT at several energies is necessary.

Energy resolution: dependence on hit position

Test mean energy and resolution vs. beam incidence position.

Zero: incidence into the center of tower, then moving along z axis and along diagonal.

> Very minor dependence of mean energy (nonlinearity) ~0.5% Small dependence of resolution ~2%.

Energy resolution: varying light yield

Beam-test: sum of energies of all towers in event with $E_i > 100 \text{ ADC}(1.43 \text{ MeV})$ $\sigma = 22.6 \text{ MeV}$

MC, no simulation of light collection: σ=18.1 MeV

MC, simulation of light collection, 40 photons/MeV: σ=18.7 MeV

MC, LY on, 4 photons/MeV: σ=19.5 MeV

MC, LY on, 1 photon/MeV: σ=24.4 MeV

Position resolution

$$x = \frac{\sum x_i w_i}{\sum w_i}$$

$$w_i = Max(0, 3 + log(E_i/E_{tot}))$$

Beam-test: use all towers in event with E_i>100 ADC(1.43 MeV)

MC, digits sum: use all energy depositions in event above threshold (1.4 MeV)

Position resolutions are close, but shape in beam-test is different and asymmetric.

Conclusions

- Moving electron vertex in MC from the edge of EMC improved energy resolution
- Now energy resolution in MC without LY simulation and electronic noise is smaller than in beamtest
- Agreement can be reached both by adjusting LY and noise simulation, need another energy to fix
- Position resolution is similar, but because of asymmetry of beamtest results hard to make quantitative comparison.