

"High p_T physics at \sqrt{s}_{NN} < 10 GeV: Fundamental problems and its solution"

S.S. Shimanskiy (JINR)

PLAN

1. Unique experimental features

- 2. Fundamental problems and why $\sqrt{s_{NN}} < 10 \text{ GeV}$
- 3. How can be resolved these problems

Unique experimental features

WHAT SPD HAS FOR OPERATION WITH SUCH PROBES?

PANDA Spectrometer

PANDA Russia Workshop, May 26th, 2015

Studies of extremely dense matter in heavy-ion collisions at J-PARC **J-PARC-HI** Collaboration (H. Sako (JAEA, Ibaraki & Tsukuba U.) for the collaboration). 2019. 4 pp. Published in Nucl.Phys. A982 (2019) 959-962

Studies of extremely dense matter in heavy-ion collisions at J-PARC, J-PARC-HI Collaboration (by <u>H. Sako</u> for the collaboration), 2019, 4 pp. Published in **Nucl.Phys. A982 (2019) 959-962**

Beam View

Main advantages

The unique beams: – wide range of kind of the beam particles (especially antiproton and polarization) and $\Delta p/p$ up to 10⁻⁵.

The unique detectors: $\Delta \Omega \sim 4\pi$ (exclusive reactions, correlations, backward range); detection all kinds of particles (especially neutron); working at luminosity up to $10^{30} - 10^{32}$ cm⁻² s⁻¹ (the rare event can be investigated); PID – close to full energy range.

Some unique features for NICA Ion Polarization Control

Collider	Spin Rotators based on	Polarization Direction at IP	Spin Flipping	
			Reversal Time	Orbital Parameters
RHIC (BNL)	ʻ strong ' magnetic fields	Transversal Longitudinal (w/o deuterons)	Few min	Change
JLEIC (JLAB)	'weak' solenoids	Any directions (any particles: <i>p, d, He</i> ³ ,)	Few ms	Do not change
NICA (JINR)	'weak' solenoids	Any directions (any particles: <i>p</i> , <i>d</i> , <i>He</i> ³ ,)	Few ms	Do not change

Spin Flipping System allows one to make spin reversal during an experiment (high precision experiments with polarized ions).

Some unique features for NICA

- Spin transparency mode in the NICA collider provide unique opportunity for efficient spin manipulation of any particle species (*p*, *d*, ³He, ...) in any orbit place without affecting of the collider orbital characteristics.
- Both vertical and longitudinal directions of the beam polarization in MPD and SPD detectors are available.
- Spin flipping system allows one to carry out high quality experiments with polarized proton and deuteron beams.

Some unique features for NICA

Working with spin-flippers at NICA

a) new ring fill modes (all bunches with the same polarization in both rings) and the work (sequential switching-on of the spin-flippers in the rings):

 $1^{st} ring$ +++...
 |XXX| --- |XXX| +++
 |----|
 +++...

 2nd ring +++...
 |----| |----| |----| |----| |----| |+++...

 2nd ring +++...
 |----| |----| |----| |+++...

 (++) (-+) (--) (+-) (++)

 |++) (-+) (--) (+-) (++)

XXX	- spin-flipper switching-on, no data taking

 |----| - spin-flipper switching-off, no data taking
 |----|

b) there is no problem with measuring interbunch luminosity, no problem with different polarization for different modes of the source!

The tagging stations can be used as polarimeter!

Fundamental problems and why $\sqrt{s_{NN}} < 10 \text{ GeV}$

SPIN IN PARTICLE PHYSICS

ELLIOT LEADER Imperial College, London © Cambridge University Press 2001

Preface

In purely hadronic physics, too, there are tantalizing questions regarding spin dependence. There exists a whole array of semi-inclusive experiments like $pp - \triangleright \pi X$ with a transversely polarized proton beam or target, or $pp - \triangleright$ hyperon + X, with an unpolarized initial state in which huge hyperon spin asymmetries or polarizations — at the 30%-40% level! — are observed. These experiments are very hard to explain within the framework of QCD. The asymmetries all vanish at the partonic level and one has to invoke soft, non-perturbative mechanisms. All such mechanisms predict that the asymmetries must die out as the momentum transfer increases, yet there is no sign in the present data of such a decrease.

In exclusive reactions like pp → pp the disagreement between the data on the analysing power at large momentum transfer and the naive QCD asymptotic predictions is even more severe, but here at least there is an escape clause: the theory of exclusive reactions in QCD is horrendously difficult.

SUMMARY

For the past 30 years QCD-based calculations have continued to disagree with the ZGS 2-spin & AGS 1-spin elastic data and the ZGS, AGS, Fermilab & RHIC inclusive data. * These large spin effects do not go to zero at high-energy or high-P_⊥ as was predicted.

* No QCD-based model can explain all the large spin effects.

BASIC PRINCIPLE OF SCIENCE:

If a theory does not agree with reproducible experimental data, then the theory must be modified.

These precise spin experiments provide experimental guidance for the required modification of the theory of Strong Interactions. Elastic dσ/dt, A_{nn} and A_n experiments at higher energy and P_⊥ could provide more guidance, just as the RHIC inclusive A_n experiments confirmed the similar Fermilab experiments. (E-704 Yokosawa et al.).

 $p_T \sim 2 \ GeV/c$

Energy dependence of spin-spin effects in p-p elastic scattering at 90° cm

E. A. Crosbie, L. G. Ratner, and P. F. Schultz Argonne National Laboratory, Argonne, Illinois 60439

J. R. O'Fallon Argonne Universities Association, Argonne, Illinois 60439

D. G. Crabb, R. C. Fernow,* P. H. Hansen,[†] A. D. Krisch, A. J. Salthouse,[‡] B. Sandler,[§] T. Shima, and

K. M. Terwilliger Randall Laboratory of Physics, The University of Michigan, Ann Arbor, Michigan 48109

> N. L. Karmakar University of Kiel, Kiel, Germany

S. L. Linn^{||} and A. Perlmutter

Department of Physics and Center for Theoretical Studies, The University of Miami, Coral Gables, Florida 33124

P. Kyberd

Nuclear Physics Laboratory, Oxford University, Oxford, England (Received 31 March 1980)

The energy dependence of the spin-parallel and spin-antiparallel cross sections for $p_1 + p_2 \rightarrow p + p$ at 90° m was measured for beam momenta between 6 and 12.75 GeV/c. The ratio $(d\sigma/dt)_{\text{parallel}} (d\sigma/dt)_{\text{antiparallel}}$ at 90° is about 1.2 up to 8 GeV/c and then increases rapidly to a value of almost 4 near 11 GeV/c. Our data indicate that this ratio may depend only on the variable P_{\perp}^2 , and suggests that the ratio may reach a limiting value of about 4 for large P_{\perp}^2 .

FIG. 2. Plot of the spin-spin correlation parameter A_{m} for $p+p \rightarrow p+p$ at 90°_{com}, as a function of incident beam momentum. The dashed and solid lines are handdrawn possible fits.

antiparallel differential cross sections, as a function of P_{\perp}^{2} , for p-p elastic scattering. The squares are the fixed-angle data at 90° c.m., with the incident energy varied. The circles are data (Refs. 5, 11) with the momentum held fixed at 11.75 GeV/c while the scattering angle is varied. The dashed and solid lines are hand-drawn possible fits to the 90° c.m. data.

5

A.Krisch, DSPIN 2009

INCLUSIVE PION PRODUCTION

200 GeV Polarized Proton Beam from Polarized Hyperon Decay 1990s Fermilab E-704 Yokosawa *et al.* Phys Lett B264, 462 (1991) $A_n \sim 40\%$ QCD said $A_n \sim 0$

INCLUSIVE PION ASYMMETRY IN PROTON-PROTON COLLISIONS

C. Aidala SPIN 2008 Proceeding and CERN Courier June 2009

A.Krisch, DSPIN 2009

INCLUSIVE HYPERON POLARIZATION

VOLUME 43, NUMBER 14

No data for pn- and nn-interactions PHYSICAL REVIEW LETTERS

1 October 1979

D. G. Crabb, P. H. Hansen, A. D. Krisch, T. Shima, and K. M. Terwilliger Randall Laboratory of Physics, The University of Michigan, Ann Arbor, Michigan 48109

This large negative A_{nn} for n-p elastic scattering is quite unexpected. No theoretical models predicted this effect, although a very recent constituent-interchange model¹² predicts $A_{nn} = -44\%$. This may support the suggestion that large spin effects are related to the composite nature of the nucleon.^{12,13} An earlier Regge-model prediction¹⁴ is inconsistent with our data. It seems somewhat surprising that A_{nn} is so large at a P_{\perp}^2 of only 1 (GeV/c)².

¹²G. R. Farrar, S. Gottlieb, D. Sivers, and G. H. Thomas, Phys. Rev. D <u>20</u>, 202 (1979).

FIG. 2. The spin-spin correlation parameter, A_{nn} , for pure-initial-spin-state nucleon-nucleon elastic scattering at 6 GeV/c is plotted against the square of the transverse momentum. The proton-proton and neutron-proton data are quite different.

CURRENT EXPERIMENTS USING POLARIZED BEAMS OF THE JINR VBLHE ACCELERATOR

21

Fiz. Elem. Chast. At. Yadra. 2005. V. 36. P. 954

Fig. 13. World data for deuteron break-up on protons and carbon nuclei. The Empirical Momentum Density (EMD), denoted here as Φ^2 , is defined in the text. Lines are calculated in the quasi-impulse approximation with different models for the deuteron wave function (DWF) (labels «Paris», «Nij93», «Nij1» for the Paris and Nijmegen DWFs) and in the model where rescattering effects and final state interactions are taken into account («Lyka92»[103, 104]). *a*) \bigcirc — H(*d*, *p*)X (Dubna); \blacktriangle — *d*(*e*, *e'*)X (SLAC); *b*) \star — C(*d*, *p*)X (Dubna, 1988); \bigcirc — *p*(*d*, *p*)X (Dubna, 1994); \blacksquare — C(*d*, *p*)X (Dubna, 1995); *c*) \bullet — Saclay (1991); \blacksquare — ALPHA (1992); \diamondsuit — ANOMALON (1993); \bigtriangleup — ALPHA (1994)

Non-polarized particle beams

QB.10.2020

pp -> pp (90⁰) C.W. Akerlof et al., Phys.Rev., vol.159, N5, 1138-1149, 1967

FIG. 9. Plot of $d\sigma/dt$ versus $\beta^2 P_{\perp}^2$ for all high-energy protonproton elastic scattering. Other data (Refs. 13, 20, 22, 23), are also plotted. The lines drawn are straight line fits to the data.

C. Baglin et al., Phys.Lett. B, vol.225, N3, 296-300, 1989

Fig. 3. The pp and pp elastic differential cross sections at 90° CM as function of the square of the CM energy, s. Open circles are pp data from ref. [6]. These data fit well to the drawn curve proportional to s^{-9} . The remaining points are pp data. Shaded from this experiment. Otherwise from ref. [7] (open square), ref. [8] (open triangle) ref. [9] (shaded triangle) and ref. [10] (shaded square). The lower curve is an s^{-n} fit to four data points of this experiment, neglecting systematic errors. One obtains $n=12.3\pm0.2$, but evidently the data do not seem to follow this kind of a power law.

Color(nuclear) transparency in 90° c.m. quasielastic A(p,2p) reactions

The incident momenta varied from 5.9 to 14.4 GeV/c, corresponding to $4.8 < Q^2 < 12.7 (\text{GeV/c})^2$.

26

$$T = \frac{\frac{d\sigma}{dt}(p + p^{*}) \rightarrow p + p}{Z\frac{d\sigma}{dt}(p + p \rightarrow p + p)}$$

Energy Dependence of Nuclear Transparency in C(p,2p) Scattering

A. Leksanov,⁵ J. Alster,¹ G. Asryan,^{3,2} Y. Averichev,⁸ D. Barton,³ V. Baturin,^{5,4} N. Bukhtoyarova,^{3,4} A. Carroll,³ S. Heppelmann,⁵ T. Kawabata,⁶ Y. Makdisi,³ A. Malki,¹ E. Minina,⁵ I. Navon,¹ H. Nicholson,⁷ A. Ogawa,⁵ Yu. Panebratsev,⁸ E. Piasetzky,¹ A. Schetkovsky,^{5,4} S. Shimanskiy,⁸ A. Tang,⁹ J. W. Watson,⁹ H. Yoshida,⁶ and D. Zhalov⁵
¹School of Physics and Astronomy, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Israel ²Yerevan Physics Institute, Yerevan 375036, Armenia
³Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York, 11973 ⁴Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188350, Russia
⁵Physics Department, Pennsylvania State University, University Park, Pennsylvania 16801 ⁶Department of Physics, Mount Holyoke College, South Hadley, Massachusetts 01075 ⁸J.I.N.R., Dubna, Moscow 141980, Russia

(Received 20 April 2001; published 6 November 2001)

The transparency of carbon for (p, 2p) quasielastic events was measured at beam momenta ranging from 5.9 to 14.5 GeV/c at 90° c.m. The four-momentum transfer squared (Q^2) ranged from 4.7 to 12.7 (GeV/c)². We present the observed beam momentum dependence of the ratio of the carbon to hydrogen cross sections. We also apply a model for the nuclear momentum distribution of carbon to obtain the nuclear transparency. We find a sharp rise in transparency as the beam momentum is increased to 9 GeV/c and a reduction to approximately the Glauber level at higher energies.

$$T_{\rm CH} = T \int d\alpha \int d^2 \vec{P}_{FT} n(\alpha, \vec{P}_{FT}) \frac{(\frac{d\sigma}{dt})_{pp}(s(\alpha))}{(\frac{d\sigma}{dt})_{pp}(s_0)}$$

$$\alpha \equiv A \, \frac{(E_F - P_{Fz})}{M_A} \simeq 1 - \frac{P_{Fz}}{m_p}$$

FIG. 2. Top: The transparency ratio $T_{\rm CH}$ as a function of the beam momentum for both the present result and two points from the 1998 publication [3]. Bottom: The transparency T versus beam momentum. The vertical errors shown here are all statistical errors, which dominate for these measurements. The horizontal errors reflect the α bin used. The shaded band represents the Glauber calculation for carbon [9]. The solid curve shows the shape R^{-1} as defined in the text. The 1998 data cover the c.m. angular region from 86° –90°. For the new data, a similar angular region is covered as is discussed in the text. The 1988 data cover 81° –90° c.m.

Schroeder L.S. et al. // Phys. Rev. Lett. 1979. V. 43, n. 24. P. 1787

Leksin G.A. Physics of Atomic Nuclei, Vol. 65, No. 11, 2002, pp. 1985–1994

Fig. 3. The coefficient $C(T_0 = 125 \text{ MeV})$ in the parametrization of the invariant function $f = C\exp(-T/T_0)$ in the reaction $pA(C, Al, Ti, Cu, Cd, Pb) \rightarrow pX$ for a proton escape angle of 120° in the laboratory frame versus the incident-proton energy. The filled circles refer to the initial energy of 400 GeV.

Fig. 5. Dependence of the slope parameter T_0 for the invariant function of the protons escaping under the action of $p, \pi^{\pm}, K^{-}, \gamma, \bar{\nu}$ with various energies E_0 ; the escape angle is 120° in the laboratory frame.

DIQUARK COMPONENT

31

NICA NICA

Multiquark states have been discussed since the 1st page of the quark model

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M.GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

If we assume that the strong interactions of baryons and mesons are correctly described in terms of the broken "eightfold way" 1-3, we are tempted to look for some fundamental explanation of the situation. A highly promised approach is the purely dynamical "bootstrap" model for all the strongly interacting particles within which one may try to derive isotopic spin and strangeness conservation and broken eightfold symmetry from self-consistency alone 4). Of course, with only strong interactions, the orientation of the asymmetry in the unitary space cannot be specified; one hopes that in some way the selection of specific components of the Fspin by electromagnetism and the weak interactions determines the choice of isotopic spin and hypercharge directions.

Even if we consider the scattering amplitudes of strongly interacting particles on the mass shell only and treat the matrix elements of the weak, electromagnetic, and gravitational interactions by means ber $n_t - n_{\bar{t}}$ would be zero for all known baryons and mesons. The most interesting example of such a model is one in which the triplet has spin $\frac{1}{2}$ and z = -1, so that the four particles d⁻, s⁻, u⁰ and b⁰ exhibit a parallel with the leptons.

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members u^2_3 , $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (q q q), $(q q q q \bar{q})$, etc., while mesons are made out of $(q \bar{q})$, $(q q q \bar{q})$, etc. It is assuming that the lowest baryon configuration (q q q) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q \bar{q})$ similarly gives just 1 and 8.

that it would never have been detected. A search for stable quarks of charge $-\frac{1}{3}$ or $+\frac{2}{3}$ and/or stable di-quarks of charge $-\frac{2}{3}$ or $+\frac{1}{3}$ or $+\frac{4}{3}$ at the highest energy accelerators would help to reassure us of the non-existence of real quarks.

Phys.Atom.Nucl. 74 (2011) 418-425

ЯДЕРНАЯ ФИЗИКА, 2011, том 74, № 3, с. 438–446

ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ

QUARK-DIQUARK SYSTEMATICS OF BARYONS: SPECTRAL INTEGRAL EQUATIONS FOR SYSTEMS COMPOSED BY LIGHT QUARKS

© 2011 A. V. Anisovich, V. V. Anisovich^{*}, M. A. Matveev, V. A. Nikonov, A. V. Sarantsev, T. O. Vulfs

Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina Received May 7, 2010; in final form, August 30, 2010

Hadrons from diquarks?

DIQUARK DYNAMIC

Manifestation of Diquark

arXiv:1007.4705v5 [hep-ph] 25 Sep 2010 &Phys.Rev. C83 (2011) 054606 Carlos Granados and Misak Sargsian

FIG. 2: (Color online) Ratio of the $pn \to pn$ to $pp \to pp$ elastic differential cross sections as a function of s at $\theta_{c.m.}^N = 90^0$.

Тема	Re: Cumulative at high p_T
От	Boris Kopeliovich
Кому	<u>Stepan</u>
Ответить	<u>bzk@mpi-hd.mpg.de</u>
Дата	23.01.2012 7:42

«I think that the main problem in understanding of high pT hadrons at the energies of Serpukhov is why you see more protons than pions. This was claimed long time ago by the Sulyaev's group and I remember hot debates in that back in the 80s. Those debated ended up with no clear conclusion. Much later an excess of baryons was observed by the STAR at RHIC and was called "baryon anomaly". Again, no good explanation has been proposed so far. I might have my own explanation, but haven't written anything so far. Anyway, my point is, if we do not understand the mechanism of production of baryons dominating at high pT, we should not make any certain conclusions about the cumulative mechanisms.»
V.T. Kim

DIQUARKS AND DYNAMICS OF LARGE- P_{\perp} **BARYON PRODUCTION** Modern Physics Letters A, Vol. 3, No. 9 (1988) 909–916 © World Scientific Publishing Company

In the framework of a diquark model of the nucleon, the strong scaling violation of the p/π^+ -ratio in the *pp*-collisions from $\sqrt{s} = 11.5$ GeV (IHEP, Serpukhov) to $\sqrt{s} = 23.4$ GeV (FNAL) and to $\sqrt{s} = 62$ GeV (CERN ISR) is described. A fairly good description of the magnitude of cross sections for single protons and for symmetric-proton-pairs with large- p_{\perp} is obtained. In the model with the dominating scalar (*ud*)-diquark, the yield relation $\Lambda^0/p \simeq K^+/\pi^+$ is predicted.

Fig. 1. $R = p/\pi^+$ is the particle yield ratio in the *pp*-collisions.

a) $\vartheta_{CM} = 90^\circ$: • the FNAL data¹ at $\sqrt{s} = 23.4$ GeV (E = 300 GeV); \blacktriangle the IHEP (Serpukhov) data² at $\sqrt{s} = 11.5$ GeV (E = 70 GeV).

b) $\vartheta_{CM} = 45^\circ$: • the CERN ISR data³ at $\sqrt{s} = 62$ GeV ($E \simeq 1900$ GeV).

The dotted curve shows the contribution of the qq-subprocess, the dashed one shows the contribution of the qq-subprocess. The total contribution of the qq-, qd- and dd-subprocesses is denoted by the solid lines. The dashed-dotted curves show the calculations with the diquark function $G_d^N(x) \sim (1-x)/x$ at 70 GeV (curve 1) and at 300 GeV (curve 2).

38

AND MULTIQUARK DYNAMIC

FIG. 3. Momentum spectra of particles emitted at 45° from aluminum and beryllium targets when struck by 30-Bev protons. Tritons from Be were not measured. For general remarks refer to Fig. 2 caption.

MOMENTUM (Bev/c)

41

FIG. 2. Momentum spectrum of particles emitted at 90° from a beryllium target struck by 30-Bev protons. The ordinate is the number of particles produced at the target per steradian per Bev/c per circulating proton. The dashed portions of the curves indicate regions where the corrections due to multiple scattering exceed 15%. At the time these data were taken no effort was made to detect He³.

SPIN data

N.N. Antonov et al., *JETP Letters*, Vol.101, No.10, pp.670-673(2015)

Invariant function found for positive pion, proton, deuteron and triton. The vertical dashed lines indicate the kinematical limit for elastic nucleon–nucleon scattering. The upper horizontal scale shows values of the transverse momentum p_T .

Knot out cold dense nuclear configurations

Flucton case

Knock out of a flucton in an excited state

N.N. Antonov et al., JETP Letters, Vol.101, No.10, pp.670-673(2015)

SPIN data

Average baryon number

47

SPIN data

ISSN 0021-3640, JETP Letters, 2016, Vol. 104, No. 10, pp. 662–665. © Pleiades Publishing, Inc., 2016. Original Russian Text © N.N. Antonov, A.A. Baldin, V.A. Viktorov, V.A. Gapienko, G.S. Gapienko, V.N. Gres', M.A. Ilyushin, V.A. Korotkov, A.I. Mysnik, A.F. Prudkoglyad, A.A. Semak, V.I. Terekhov, V.Ya. Uglekov, M.N. Ukhanov, B.V. Chuiko, S.S. Shimanskii, 2016, published in Pis'ma v Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, 2016, Vol. 104, No. 10, pp. 678–681.

____ FIELDS, PARTICLES, _____ AND NUCLEI

Knockout of Deuterons and Tritons with Large Transverse Momenta in *pA* Collisions Involving 50-GeV Protons

N. N. Antonov^a, A. A. Baldin^b, V. A. Viktorov^a, V. A. Gapienko^a, *, G. S. Gapienko^a,
V. N. Gres^a, M. A. Ilyushin^a, V. A. Korotkov^a, A. I. Mysnik^a, A. F. Prudkoglyad^a,
A. A. Semak^a, V. I. Terekhov^a, V. Ya. Uglekov^a, M. N. Ukhanov^a,
B. V. Chuiko^{a[†]}, and S. S. Shimanskii^b

$$\frac{E_d}{\sigma_{inel}} \frac{d^3 \sigma_A}{dp_A^3} = B_A \times \left(\frac{E_p}{\sigma_{inel}} \frac{d^3 \sigma_p}{dp_p^3}\right)^A$$

Μ	ean	val	ues	of	the	B_2	parameter
---	-----	-----	-----	----	-----	-------	-----------

Target	С	Al	Cu	W
$B_2 \times 10^2$, GeV ² / c^3	1.41 ± 0.10	1.56 ± 0.08	1.51 ± 0.07	1.41 ± 0.06

SPIN data

49

ON THE FLUCTUATIONS OF NUCLEAR MATTER

D. I. BLOKHINTSEV

20

1.0

Joint Institute for Nuclear Research

Submitted to JETP editor July 1, 1957

J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 1295-1299 (November, 1957)

It is shown that the production of energetic nuclear fragments in collisions with fast nucleons can be interpreted in terms of collisions of the incoming nucleon with the density fluctuations of the nuclear matter.

1. INTRODUCTION

L HE motion of nucleons in nuclei can result in short-lived tight nucleon clusters, in other words, in density fluctuations of nuclear matter. Since such clusters are relatively far removed from the other nucleons of the nucleus, they become atomic nuclei of lower mass in a state of fluctuating compression.

In their study of the scattering of 675-Mev protons by light nuclei, Meshcheriakov and coworkers^{1,2} observed recently certain effects which confirm the existence of such fluctuations, at least for the simplest nucleon-pair fluctuations, which lead to the formation of a compressed deuteron.

1.Cold - exists inside ordinary nuclear matter as a quantum component of the wave function (with some probability and life time).

2. superDense - several nucleons can be in a volume less than the nucleon volume. The mass will be several nucleon masses. The small size means that the multinucleon(multiquark) configuration seeing as point like objects in processes with high transfer energy.

3. Baryonic Matter - enhancement of baryonic states and suppression of sea and gluon degrees of freedom (mesons and antiparticles production).

NN - interactions mainly

How can be resolved these problems

NN - interactions mainly

From the inclusive experiments to the correlations and the exclusive experiments. We haven't the theory but we will have new experimental set ups.

Way to resolve these problems -MPI and Exclusive reaction

NN Elastic scattering with polarized deuteron beams :

$$p \uparrow + p \uparrow \rightarrow p + p \quad \text{for calibration}$$
$$p \uparrow + n \uparrow \rightarrow p + n \quad \int \text{New data!}$$
$$n \uparrow + n \uparrow \rightarrow n + n \quad \int \text{New data!}$$

By the way we will have the counting rules verification! pd, nd and dd - too!

Exclusive NN study at $x_{T} \sim 1$ Hadron reactions when all particles in high p_T region $N \uparrow +N \uparrow \rightarrow BB + MM$

Mechanisms of hyperons polarization

 $\left. \begin{array}{c} N \uparrow N \uparrow \rightarrow BB + \pi \pi (KK) \\ N \uparrow N \uparrow \rightarrow \Delta \Delta \end{array} \right\}$

Detail vertexes studies and spin structure of the interaction vertex:

q + (q) - (quark - quark)q + (qq) - (quark - diquark)(qq) + (qq) - (diquark - diquark)

High p_T exclusive inelastic reactions -> MPI $p\uparrow +p\uparrow \rightarrow B+B+M\overline{M}$

- SPD

d

Exotic states and flavor universality

Exotic states production

Exotic states production

pp - reactions with tetraquarks production

$\begin{array}{c} \text{PANDA} \\ \text{Direct reaction to tetraquarks production in } pp \end{array}$

62

- SPD

PANDA

Exotic states production

pd - reaction with tetraquarks +pentaquark production

- SPD

63

Tetraquarks in the light meson sector

Light meson sector: scalars!

Christian S. Fischer (University of Gießen)

X(3872) as a four-quark state

Study of feasibility to detect pentaquark $\theta^+(\overline{\theta}^-)$ in PANDA

S.Belostotski, S.Manaenkov, V.Petrov, D.Veretennikov

PANDA collaboration meeting 19/3, November 4-8, 2019, GSI

Exclusive $\theta^+(\overline{\theta}^-)$ production in p anti-p collision

Pentaquark production by K-meson exchange

Differential cross-section

(V.Petrov, S.Manaenkov)

$$\frac{d\sigma}{dt} = \frac{g^4 [(M_\theta - m_N)^2 - t]^2}{16\pi s (s - 4m_N^2)(M_K^2 - t)^2}$$

 m_N is nucleon mass M_K is K⁰ mass M_{θ} is pentaquark mass s, t are the Mandelstam variables

Total cross-section

$$\sigma_{tot} = \frac{g^4}{16\pi s (s - 4m_N^2)} \left\{ [(M_\theta - m_N)^2 - M_K^2]^2 \left[\frac{1}{M_K^2 - t_{max}} - \frac{g^4}{M_K^2 - t_{max}} \right] \right\}$$

 $\theta^{+} \text{ total width}$ $\Gamma_{tot} = \frac{g^2 P_0^3}{\pi [(M_{\theta} + m_N)^2 - M_K^2]} \qquad P_0$ θ^{+}

 P_0 is momentum of K^0 in $\theta^{\scriptscriptstyle +}$ rest system

HIGH p_{T} ISSUES at SPD and ...

NN – interactions mainly

1. Flavor universality (pp- and nn-interactions).

- 2. Diquark properties.
- 3. Exotic states.
- 4. Nature of the spin effects.
- 5.FSI (with s, c-quarks participation).

```
6.\Lambda N - hypernuclei.
```

7....

NA- and AA – interactions

```
8. Nature of CsDBM and CT.
9. Subthreshold J/\Psi production.
10. The Deuteron spin structure.
11. np(nn) dilepton anomaly.
```

12....

Thank you!

B.Van Overmeire, J.Ryckebusch, nucl-th/0608040

COLOR TRANSPARENCY

70

PHYSICAL REVIEW C 70, 01 208 (2004)

VIII. SUGGESTIONS FOR FUTURE EXPERIMENTS

Clearly there remain a number of interesting investigations involving nuclear transparency of protons and other hadrons. A revival of the AGS fixed target program [44], or the construction of the 50-GeV accelerator as part of the J-PARC complex in Japan [55], would provide excellent opportunities to expand the range of these nuclear transparency studies. Some of the remaining questions are the following. (1) What happens at higher incident momentum? Does nuclear transparency rise again above 20 GeV/c, as predicted in the Ralston-Pire picture [56]?

(2) A-dependent studies in the 12 to 15 GeV/c range; will the effective absorption cross section continue to fall

after the nuclear transparency stops rising at $\sim 9.5 \text{ GeV}/c$ [56]?

(3) At the higher energy ranges of these experiments the spin effects are expected to be greatly diminished. However, they continue to persist, as shown in both single and double spin measurements [34,57]. So it is important to see, in quasielastic scattering inside a nucleus, whether a relatively pure pQCD state is selected, and if the spin dependent effects are attenuated.

(4) Measurements of nuclear transparency with antiprotons, pions, and kaons will be informative. These particles have widely different cross sections at $90^{\circ}_{c.m.}$. For instance, the *pp* differential cross section at $90^{\circ}_{c.m.}$ is 50 times larger than the \overline{pp} differential cross section [19]. How should this small size of the \overline{pp} cross section affect the absorption of \overline{p} 's by annihilation?

(5) The production of exclusively produced resonances provides a large testing ground for nuclear transparency effects. This is especially true for those resonances that allow the determination of final state spin orientation, such as ρ 's or Λ 's [19,36]. Will the interference terms that generate asymmetries disappear for reactions which take place in the nucleus?

(6) Measurements in light nuclei that determine the probability of a second hard scatter after the first hard interaction are an alternative way to study nuclear transparency effects. With the proper kinematics selected, the probability of the second scatter is dependent on the state of the hadrons at the first hard interaction [58]. J.W. Cronin et al., Production of hadrons at large transverse momentum at 200, 300, and 400 GeV, Phys.Rev. D, v.11, N 11, 3105–3123 (1975)

FIG. 20. Comparison of the cross-section ratio p/π^+ measured on tungsten at $\sqrt{s} = 23.7$ GeV (closed circles), with that obtained by extrapolation to A = 1 (open circles). Ratios obtained from the British-Scandinavian collabortion (Ref. 23) at $\sqrt{s} = 23.4$ GeV are also plotted (closed squares).

V.S. Pantuev Physics of Atomic Nuclei, 2009, Vol. 72, No. 12, pp. 1971–1981

Session of Nuclear Physics Division of Russian Academy of Science. 5-8.11.2013, Protvino

- Baryon to meson ratio increasing with centrality for $p_T < 8$ GeV/c.
 - Enhancement at moderate p_{T} is consistent with radial flow
 - May be explained by quark recombination from QGP (coalescence model)
- For $p_T > 8$ GeV/c no dependence on centrality and collision system
 - Consistent with fragmentation in vacuum
7:

The spin physics attracts great attention since the 70th when at the energy of beams ~ 10 GeV. In reactions with hadrons in complete contradiction with predictions of QCD that polarization characteristics must disappear at high energies the huge spin effects were discovered. The begun detailed studies with the higher energies showed that the observed spin effects do not disappear even at energies of hundreds GeV. The deep inelastic lepton scattering on polarized targets in 80th and 90th of the past century led to the problem named "spin crisis". Until now the spin effects have not found complete physical explanation in the framework of QCD. The situation when there is no adequate understanding of polarization phenomena at the energies ~ 10 GeV is real challenge to nowadays theoretical models. This energy region becomes especially important in connection with the increasing interest to the astrophysical problems, where enormous magnetic fields up to $\sim 10^{18}$ Gs have been discovered. Strong magnetic fields can be as indication to an enormous role of the spin effects in processes of the massive star evolution, the nucleosynthesis of heavy elements and the solution of the mystery of the supernova explosions. One of the most important problem for highenergy physics remains until now is understanding the nature of the spin and, in particular, skill to calculate the spin of hadrons from constituent spins.

In the program of the international conference DSPIN07 the results of activity with polarized beams of the LHE JINR accelerator complex have been presented. These reports have reflected: the development of new methods to preservation of polarization in the nuclotron for polarized protons and the lightest nuclei; the project to create new polarized ions source (in plan to use components from IUCF CIPIOS source); the proposals of further spin research with polarized beams of modernized nuclotron-M and in a future with NICA-collider beams. All these proposals are actually the substantiation of the project for creation on nuclotron-M the center for spin studies in the region of energies ~ 10 GeV. The acceleration of the lightest polarized nuclei will make possible for the first time studies of the polarized nuclear matter collisions ($d\uparrow d\uparrow$, $d\uparrow^{3}He\uparrow$ and ${}^{3}He\uparrow^{3}He\uparrow$), for the first time study of the complete set of the isotopic states of the nucleonnucleon interactions ($p\uparrow p\uparrow$, $n\uparrow p\uparrow$ and $n\uparrow n\uparrow$) and study of the of orbital angular momentum contribution to the nucleon spin. Accelerator complex with such possibilities will not have a concurrence from other activities which will lead polarization studies and obtained data will help to resolve the riddles of the spin, which do not have the solution since 70th. Materials which have been presented on DSPIN07 confirm high level and urgency of JINR polarization studies and the undoubted realizability of the proposed project of creation of a unique center for polarization studies. Spin community (presented on DSPIN07) expresses their complete interest in realization of polarization project on nuclotron-M and future development the spin program on NICA-collider.

Dodye E SIVERC

SPD

A.H. Bauroel OPADH PANCU

Matthius Grosse Perdikam

Bunce Gerry (BNL, Brookhaven, USA)
 Soffer Jacques (Temple Univ. Philadelphia, USA)
 Belostotski Stanislav (PNPI, Gatchina, Russia)
 Dodge Gail (Old Dominion Univ. Norfolk, USA)
 Sivers Dennis (Portland Phys. Inst. USA)
 Vasiliev Alexander (IHEP, Protvino, Russia)
 Ramsey Gordon (Loyola Univer. Chicago, USA)
 Crabb Donald G. (Univ. of Virginia, Charlottesville, USA)
 Troshin Sergey (IHEP, Protvino, Russia)
 Nurushev Sandibek (IHEP, Protvino, Russia)
 Ginzburg Ilja (IMSBRAN Novosibirsk, Russia)
 Grosse Perdekamp Matthias (Univ. of Illinois, Upton, USA)

«ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА», 1980, ТОМ 11, ВЫП. 3

УДК 539.171.1

РАССЕЯНИЕ ЧАСТИЦ ВЫСОКОЙ ЭНЕРГИИ КАК МЕТОД ИССЛЕДОВАНИЯ МАЛОНУКЛОННЫХ КОРРЕЛЯЦИЙ В ДЕЙТОНЕ И ЯДРАХ

М. И. Стрикман, Л. Л. Франкфурт

Ленинградский институт ядерной физики им. Б. П. Константинова, Ленинград

572 М. И. СТРИКМАН, Л. Л. ФРАНКФУРТ

малых расстояний в ядрах и о способе их описания представляет самостоятельный интерес. Цель обзора — показать, что отбор событий, содержащих кумулятивные частицы, увеличивает относительный вклад от конфигураций в волновой функции ядра, содержащих несколько нуклонов (два, три) на малых относительных расстояниях *. (Кумулятивными частицами мы, следуя [6], называем вторичные частицы, образующиеся в кинематической области, запрещенной для рассеяния на свободном нуклоне. Независимо от теоретической интерпретации этот термин удобен для обозначения указанной кинематической области.) 6. Балдин А. М. — Краткие сообщ. по физике, 1971, т. 1, с. 35.

МАТЕРИАЛЫ ХШ ЗИМНЕЙ ШКОЛЫ ЛИЯФ 1978 141 КУМУЛЯТИВНЫЕ НУКЛОНЫ И КОРОТКОДЕЙСТВУЮЩИЕ КОРРЕЛЯЦИИ В ЯДРЕ

М.И.Стрикман и Л.Л.Франкфурт

Status of the pentaquark problem

 1st relatively certain theoretical suggestion of mass ~1530 MeV and width < 15 MeV :

Diakonov, Petrov, Polyakov, Z.Phys., A359 (1997) 305.

• Experiment : <u>about ten</u> papers with positive evidences; about ten papers with negative results

(some of them with higher statistics).

• Common opinion and PDG position (since edition of 2008) :

Pentaquark is dead !

(Note, at the same time, great enthusiasm

in searches for tetraquarks !)

$P_{ m c.m.^2}$ $({ m GeV}/c)^2$	P_0 (GeV/c)	$(d\sigma/d\Omega)_{ m o.m.}$ $(\mu { m b/sr})$	$(d\sigma/dt)_{ m o.m.}$ $\mu { m b}/({ m GeV}/c)^2$	Error in $d\sigma/d\Omega \& d\sigma/dt$ %
1.946	5.0	8.51	13.74	2.9
1.993	5.1	7.90	12.45	3.3
2.039	5.2	7.09	10.93	3.1
2.086	5.3	6.49	9.77	3.6
2.132	5.4	5.53	8.15	3.1
2.178	5.5	4.90	7.07	3.4
2 223	5.6	4 47	6.32	3 1
2 270	5.7	3 72	5 1 5	33
2 316	5.9	3.37	4.57	3.3
2 363	5.0	3.37	3.64	3.5
2.305	5.9	2.14	2 19	3.5
2.409	0.0	2.44	3.10	3.1
2.450	6.1	1.02	2.80	3.1
2.505	0.2	1.85	2.30	3.7
2.595	0.4	1.50	1.82	3.7
2.080	0.0	1.07	1.25	4.7
2.779	0.8	0.796	0.900	4.7
2.873	7.0	0.645	0.706	4.1
2.965	7.2	0.515	0.540	4.0
3.059	7.4	0.386	0.396	4.8
3.151	7.6	0.305	0.304	5.4
3.247	7.8	0.253	0.245	4.5
3.338	8.0	0.217	0.204	4.5
3.386	8.1	0.169	0.157	3.9
3.434	8.2	0.172	0.157	4.4
3.480	8.3	0.154	0.139	3.8
3.527	8.4	0.153	0.136	4.6
3.618	8.6	0.127	0.110	4.6
3.713	8.8	0.103	0.0871	4.8
3.806	9.0	0.0809	0.0667	4.6
3.897	9.2	0.0780	0.0629	4.3
3.992	9.4	0.0676	0.0532	5.3
4.084	9.6	0.0589	0.0453	4.9
4.178	9.8	0.0536	0.0403	4.7
4.272	10.0	0.0468	0.0344	4.9
4.364	10.2	0.0441	0.0318	4.8
4.461	10.4	0.0386	0.0272	4.7
4.554	10.6	0.0356	0.0246	4.8
4.644	10.8	0.0303	0.0205	4.9
4.739	11.0	0.0284	0.0188	5.5
4.831	11.2	0.0255	0.0166	5.4
4.924	11.4	0.0202	0.0129	5.4
5.018	11.6	0.0190	0.0119	5.2
5.112	11.8	0.0153	0.00940	5.4
5.208	12.0	0.0143	0.00862	5.4
5.299	12.2	0.0118	0.00699	5.3
5.392	12.4	0.0116	0.00676	5.4
5.490	12.6	0.00953	0.00545	6.3
5.579	12.8	0.00867	0.00488	5.7
5.674	13.0	0.00739	0.00409	5.9
5.770	13.2	0.00722	0.00393	7.1
5.861	13.4	0.00525	0.00281	5.7

TABLE	г.	Proton-proton	elastic	scattering	cross	sections	at	90°
		in the c	center-o	f-mass syst	em.			

76

The rate for L~ 10³⁰ cm⁻²c⁻¹:

\sim	0.2	C ⁻¹	

~ 0.01 c⁻¹