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Questions involved  in studies of the short-range / high momentum nuclear structure and  
understanding global nucleon structure and dynamics of large momentum transfer processes 
are delicately intertwined. Energy range of NICA  is similar to the one investigated before at 
fixed target facilities.
However  motivation is different  - going beyond single parton densities - parton - 
parton correlations, etc. Hence  interest in large momentum transfer semi/
exclusive processes with rather small cross sections, detection of many body final 
states requiring acceptance  over wide range of angles and momenta and one can 
benefit from a collider kinematics and nearly 4π acceptance

large angle two body processes

color transparency phenomena

branching processes and GPDs

study of the properties on cold dense nuclear matter 
- structure of the short-range correlations (SRC)

Outline

which of the processes discussed in the talk can be measured at the first stage and 
which have to wait till the second stage  requires further numerical studies 
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Three important  energy momentum  transfer scales in structure (interactions with) 
nuclei with different role of low momentum nucleons (k< kF -naive estimate of the 
highest momenta in nuclei for non-interacting gas)  and high momentum nucleons 
due to local NN interactions (slow decrease with k  distribution).

Experience of quantum field theory - interactions at different resolutions 
(momentum transfer) resolve different  degrees of freedom - renormalization,.... No 
simple relation between relevant degrees of freedom at different scales. 

➟ Complexity of the problem

Study of short range/ high momentum/ high density (a core of 
neutron star level)  nucleon correlations in nuclei
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Hard nuclear reactions I:  energy transfer > 1 GeV and momentum transfer q > 1 GeV. 

 Sufficient to resolve short-range correlations (SRCs) = direct observation of SRCs but  
not sensitive to quark-gluon structure of the constituents 

Hard nuclear reactions II:  energy transfer ≫ 1 GeV and momentum transfer q ≫ 1 
GeV.  May involve nucleons in special (for example small size  configurations).    
Allow to resolve quark-gluon structure of SRC: difference between bound and free 
nucleon wave function, exotic configurations

③

②
q0 � 1GeV ⇥ |V SR

NN |,  q � 1GeV/c⇥ 2 kF

Principle of resolution scales was ignored in 70‘s leading to believe that  SRC could 
not  be unambiguously observed.  Hence very limited data 

Three important scales

To resolve nucleons with k < kF , one needs Q2≥ 0.8 GeV2.

related effect: Q2  dependence of quenching 

①



Realistic NN interactions - NN potential slowly (power law) decreases at large momenta -- 
nuclear wf high momentum  asymptotic determined by singularity of potential:

�2
D(k)|k�⇥ � V 2

NN (k)
k4

D-wave dominates in the Deuteron wf
 for   300 MeV/c < k < 700 MeV/c

D-wave is due to  tensor forces which 
are much more important  for pn than pp

VNN(k)

k

- k

k1~0

k2~0

Properties of SRCs - a brief summary
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S-wave

D-wave

Deuteron wave function

CD  Bonn

v18 Argonne 
Large differences between in nD(p)=ψ2D(p) for p>0.4 GeV/c  - 
absolute value and relative importance of S and D waves between 
currently popular models though they fit equally well pn  phase 
shifts.  Traditional nuclear physics probes are not adequate to 
discriminate between these models.
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Tensor forces are pretty singular  ➟ manifestations very similar to 
shorter range correlations - so we refer to both of them as SRC



Operational definition of the SRC: nucleon belongs to SRC if its instantaneous  removal from 
the nucleus leads to emission of  one or two nucleons which balance its momentum:  includes not only 
repulsive core but also tensor force interactions.  Prediction of back - to - back correlation between 
momenta of spectator and hit nucleon.

Studies of the spectral and decay function of 3He reveal both two nucleon and three nucleon 
correlations 

For 2N SRC  we can model decay function as decay of a NN pair moving in mean field (like for 
spectral function  in the model of Ciofi, Simula and Frankfurt and MS91),    Piasetzky et al 06

☝

• 2N Correlations
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-Type 2N-I correlations: E(2N−I)
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-Type 3N-I correlations: E(2N−I)
m ≈ |ϵA|

-Type 3N-II correlations: E(3N−II)
m = 2

√
m2 + p2

m − 2m −TA−1

Use 3He(e,e’ppn)

reactions to 
study pn, pp and 
ppn correlations.

Remember:
structure (though not 
probability) of 2N and 
3N correlations is very 

similar in A=3 and 
heavy nuclei

Spectator is 
released

Emission of  fast nucleons 
“2”  and “3” is strongly 
suppressed due to FSI
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resembles 2N momentum 
distribution

does not resemble 2N momentum 
distribution -

 Sargsian et al 2004



Similarly  for 

nA(k)|k�⇥ � V 2
NN (k)
k4

nA(k) =
⇥ i=A�

i=1

d3ki⇥
2
A(ki)�3(k � k1)

=⇥ nA(k) � a2(A)�2
D(k)|k�⇥

confirmed by numerical calculations starting ~ 
1980

Pieper et al 92
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Extracted from the data assuming dominance of 2N 
SRC

We also estimated  a2(12C)= 4 ÷ 5

�2
D(k)/�2

D(k = 300MeV/c)
�2

A(k)/�2
A(k = 300MeV/c)

Momentum distributions normalized
 to its value at 300 MeV/c.

First application of the logic of decay function - spectator mechanism of production of fast backward nucleons - 
observed in high energy proton, pion , photon - nucleus interactions with a number of simple regularities.  We 
suggested - spectator mechanism - breaking of 2N, 3N SRCs. We extracted ( Phys.Lett 1977 ) two nucleon 
correlation function from analysis of K.Egiyan et al data on 
 γ(p) 12 C→backward p+X processes [ no backward nucleons are produced in the scattering off free protons!!!]

Spectator production of the backward  proton from 2N SRC

Backward direction is very good for 
looking for decay of SRCs
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Before collision

p

-p

After collision
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Next critical test - comparison of the data on pD ➞ p +X and p4He ➞ p +X  
obtained in Dubna by Stavinskii group. Spectra of protons are similar for 
momenta of nucleons 300 MeV/c <k < 600 MeV/c

80

FIG. 8.2: Comparison of the FB nucleon yields from 4He and D. The experimental points from [27, 38, 39] illustrate precocious
limiting fragmentation for p+4 He⇥ p+X reaction. Dot-dashed curve for 4He is the calculation in the two-nucleon correlation
approximation which uses as input n(k) from [118]. The shaded region is the calculation with inclusion of three-nucleon
correlations described in the text.

FIG. 8.3: The ratio of the di�erential cross sections per nucleon for the p+A⇥ p+X reaction (A1 = Ta, A2 = C) for di�erent
emission angles. The experimental data are from 400 GeV measurement for 70 � � � 160� [35, 36] and 9 GeV measurement
for � = 180� [33, 34].

demonstrate that universality is valid practically in all backward hemisphere at � ⇤ 1.2. For example the ratio

R(pN, Ta, C) =
1

ATa
GTa/P

p (pN)
�

1
Ac

GC/P
p (pN)

does not change more than by a factor ⌅ 2 (fig. 8.3) while the cross sections decrease by a factor 2 ⇥ 104! (see figs.
8.4(a), 8.4(b)). (The data [33–36] indicate some small increase of the ratio R(pN,Ta, C) and also R(pN,Ta,6 Li) in the
region � � 2.2 though in the region 1.2 < � < 2.2 the ratio is constant within experimental accuracy.)

At small nucleon momenta (pN ⌅ 0.4 GeV/c) GA/N
a rather weakly depends on the emission angle ⇥, though with

increase of pN the spectrum becomes strongly anisotropic (figs. 8.4(a), 8.4(b)).
To compare the data obtained using di�erent targets and projectile it is convenient to fit GA/N

a (pN) in the form

GA/N
a (pN) = Ca exp{�T/T0(⇥)} ⇧ Ca exp{�B(⇥)p2}

which reasonably describes the data (especially exp(�T/T0) fit) up to pN ⌅ 1 GeV/c (as usually T is kinetic energy
of the FB nucleon).

production of protons at 180o 
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Unfortunately no more data on pD, p4He since 1980



A(e,e’) at x>1  is the simplest reaction to check dominance of 
2N, 3N SRC and to measure absolute probability of SRC 

x=AQ2/2q0mA=1 is exact  kinematic limit for all Q2 for the 
scattering off a free nucleon; x=2 (x=3) is exact  kinematic limit for 
all Q2 for the scattering off a A=2(A=3) system (up to <1% correction 
due to nuclear binding)
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Scientists believe that the crushing forces
in the core of neutron stars squeeze nucle-
ons so tightly that they may blur together.
Recently, an experiment by Kim Egiyan and
colleagues in Hall B at the US Department
of Energy’s Jefferson Lab caught a glimpse
of this extreme environment in ordinary
matter here on Earth. Using the CEBAF
Large Acceptance Spectrometer (CLAS)
during the E2 run, the team measured
ratios of the cross-sections for electrons
scattering with large momentum transfer
off medium, and light nuclei in the kine-
matic region that is forbidden for low-
momentum scattering. Steps in the value
of this ratio appear to be the first direct
observation of the short-range correlations
(SRCs) of two and three nucleons in nuclei,
with local densities comparable to those in
the cores of neutron stars.

SRCs are intimately connected to the
fundamental issue of why nuclei are dilute
bound systems of nucleons. The long-range attraction between nucle-
ons would lead to a collapse of a heavy nucleus into an object the
size of a hadron if there were no short-range repulsion. Including a
repulsive interaction at distances where nucleons come close
together, ≤0.7 fm, leads to a reasonable prediction of the present
description of the low-energy properties of nuclei, such as binding
energy and saturation of nuclear densities. The price is the prediction
of significant SRCs in nuclei.

For many decades, directly observing SRCs was considered an
important, though elusive, task of nuclear physics; the advent of
high-energy electron–nucleus scattering appears to have changed
all this. The reason is similar to the situation encountered in particle
physics: though the quark structure of hadrons was conjectured in
the mid-1960s, it took deep inelastic scattering experiments at SLAC
and elsewhere in the mid-1970s to prove directly the presence of
quarks. Similarly, to resolve SRCs, one needs to transfer to the
nucleus energy and momentum ≥1 GeV, which is much larger than
the characteristic energies/momenta involved in the short-distance
nucleon–nucleon interaction. At these higher momentum transfers,
one can test two fundamental features of SRCs: first, that the shape
of the high-momentum component (>300 MeV/c) of the wave func-
tion is independent of the nuclear environment, and second, the
balancing of a high-momentum nucleon by, predominantly, just one
nucleon and not by the nucleus as a whole.

An extra trick required is to select kinematics where scattering off

low-momentum nucleons is strongly sup-
pressed. This is pretty straightforward at
high energies. First, one needs to select
kinematics sufficiently far from the regions
allowed for scattering off a free nucleon,
i.e. x = Q2/2q0mN < 1, and for the scatter-
ing off two nucleons with overall small
momentum in the nucleus, x < 2. (Here Q2

is the square of the four momenta trans-
ferred to the nucleus, and q0 is the energy
transferred to the nucleus.) In addition,
one needs to restrict Q2 to values of less
than a few giga-electron-volts squared; in
this case, nucleons can be treated as par-
tons with structure, since the nucleon
remains intact in the final state due to final
phase-volume restrictions.

If the virtual photon scatters off a two-
nucleon SRC at x > 1, the process goes as
follows in the target rest frame. First, the
photon is absorbed by a nucleon in the
SRC with momentum opposite to that of

the photon; this nucleon is turned around and two nucleons then fly
out of the nucleus in the forward direction (figure 1). The inclusive
nature of the process ensures that the final-state interaction with
the rest of the nucleus does not modify the cross-section. Accord-
ingly, in the region where scattering off two-nucleon SRCs domi-
nates (which for Q2 ≥ 1.4 GeV2 corresponds to x > 1.5), one predicts
that the ratio of the cross-section for scattering off a nucleus to that
off a deuteron should exhibit scaling, namely it should be constant
independent of x and Q2 (Frankfurt and Strikman 1981). In the
1980s, data were collected at SLAC for x > 1. However, they were in
somewhat different kinematic regions for the lightest and heavier
nuclei. Only in 1993 did the sustained efforts of Donal Day and col-
laborators to interpolate these data to the same kinematics lead to
the first evidence for scaling, but the accuracy was not very high.

The E2 run of the CLAS detector at Jefferson Lab was the first exper-
iment to take data on 3He and several heavier nuclei, up to iron, with
identical kinematics, and the collaboration reported their first find-
ings in 2003 (Egiyan et al. 2003). Using the 4.5 GeV continuous
electron beam available at the lab’s Continuous Electron Beam
Accelerator Facility (CEBAF), they found the expected scaling behav-
iour for the cross-section ratios at 1.5 ≤ x ≤ 2 with high precision.

The next step was to look for the even more elusive SRC of three
nucleons. It is practically impossible to observe such correlations in
intermediate energy processes. However, at high Q2, it is straightfor-
ward to suppress scattering off both slow nucleons and two-nucleon

NUCLEAR PHYSICS

1CERN Courier November 20 0 5

Clo se n u cleo n  en co u n ters
Jefferson Lab may have directly observed short-range nucleic correlations, with densities

similar to those at the heart of a neutron star. Mark Strikman explains.

Fig. 2. Scattering of a virtual photon off a
three-nucleon correlation, x > 2, before (left)
and after (right) absorption of the photon.

Fig. 1. Scattering of a virtual photon off a two-
nucleon correlation, x > 1.5, before (left) and
after (right) absorption of the photon.

▲▲

1<x<2

two nucleons of SRC are fast 



Only fsi close to mass shell when momentum of the struck nucleon is close to one for the 
scattering off a correlation. At very large Q - light-cone fraction  of  the struck nucleon should 
be close to x (similar to the parton model situation) - only for these nucleons fsi can contribute 
to the total cross section, though even this fsi is suppressed. Since the local structure of WFs is 
universal - these local fsi should be also universal.

3

will depend only on the ratio aj(A)/aj(A′). This ‘scal-
ing ’ of the ratio will be strong evidence for the dominance
of scattering from a j-nucleon SRC. Note that motion of
the SRC will chang e the value of the ratio, but not the
scaling itself [7 , 8 ].

Final state interactions (FSI) also can affect the inclu-
sive cross section and must be taken into account . In
SRC studies, FSI consists of two components: interac-
tion of the struck nucleon (i) with other nucleons in the
j-nucleon SRC and (ii) with nucleons in the A−j residual
nucleus. Due to the smaller distances and smaller relative
momenta of nucleons in the SRC, the first component of
FSI dominates [9 , 2 1 ]. This means that FSI are localized
mainly within SRCs, hence the FSI can modify σ(j) but
not aj(A) (ratios) in the decomposition of Eq. (1 )

Since the probabilities of j-nucleon SRC are expected
to drop rapidly with j ( since the nucleus is a dilute
bound system of nucleons) one expects the cross section
ratios of heavy and lig ht nuclei for j < xB < j + 1 to
equal A′

A · aj(A)
aj(A′) . Moreover one expects that the relative

probabilities of j-nucleon SRC should g row with A (for
A ≥ 1 2 ) as [4 ]

aj(A) ∝ 1
A

∫
d3rρj

A(r), (2 )

where ρA(r) is the nuclear density. Eq. 2 predicts a faster
increase with A of hig her relative correlations, leading to
an expectation of steps in the ratio of σ(A)

σ(A′) for heavy and
lig ht nuclei. Observation of such steps (ie: scaling ) would
be a crucial test of the dominance of SRC in inclusive
electron scattering . It would demonstrate the presence
of 3 -nucleon SRC and confirm the previous observation
of 2 -nucleon SRC.

In particular, for 1 .4 < xB < 2 and Q2 > 1 .4
(GeV/ c)2 one expects [6 , 9 ] that the ratio R(A, 3He) =

3σA(Q2,xB)
Aσ3He(Q

2,xB) of inclusive electron scattering from nucleus
A and 3He is independent of Q2 and xB (ie: it scales).
This scale factor is related to the relative probability of
2 -nucleon SRC those nuclei. In our previous work [1 0 ] we
directly measured these ratios for the first time and es-
tablished that they indeed scale, confirming finding s [9 ]
which reported scaling based on the comparison of the
data for A ≥ 3 [1 1 –1 3 ] and A = 2 [1 4 ] obtained in some-
what different kinematic conditions. In this work, we
repeat our previous measurement with hig her statistics.

Moreover we can use the ratio R(A, 3He) to search
for the even more elusive 3 -nucleon SRC: correlations
which orig inate from both short-rang e NN interactions
and three-nucleon forces. As 3 -nucleon SRC are very
low-probability, we need to suppress 2 -nucleon SRC by
choosing xB > 2 so that ν ≪ k2/2 mN . This analysis was
desig ned to probe for 3 -nucleon correlations by looking
for scaling in the reg ion 2 ≤xB ≤3 .

Two sets of measurements were performed at the
Thomas Jefferson National Accelerator Facility in 1 9 9 9
and 2 0 0 2 . The 1 9 9 9 measurements used 4 .4 6 1 GeV elec-
trons incident on liquid 4He and solid 12C targ ets. The

2 0 0 2 measurements used 4 .4 7 1 GeV electrons incident on
a solid 56Fe targ et and 4 .7 GeV electrons incident on a
liquid 3He targ et. The 12C and 56Fe data were taken
with an empty liquid-targ et cell.

Scattered electrons were detected in the CLAS spec-
trometer [1 5 ]. The lead-scintillator electromag netic
calorimeter provided the electron trig g er and was used to
identify electrons in the analysis. Vertex cuts were used
to eliminate the targ et walls. The estimated remaining
contribution from the two Al 1 5 µ targ et cell windows
is less than 0 .1 %. Software fiducial cuts were used to
exclude reg ions of non-uniform detector response. Kine-
matic corrections were applied to compensate for drift
chamber misalig nments and mag netic field uncertainties.

We used the GEANT-based CLAS simulation, GSIM,
to determine the electron acceptance correction fac-
tors, taking into account “bad” or “dead” hardware
channels in various components of CLAS. The mea-
sured acceptance-corrected, normalized inclusive electron
yields on 3He, 4He, 12C and 56Fe at 1 < xB < 2 ag ree
with Sarg sian’s radiated cross sections [1 6 ] that were
tuned on SLAC data [1 7 ] and described reasonably well
the Jefferson Lab Hall C [1 8 ] data.

We calculated the radiative correction factors for xB <
2 using Sarg sian’s cross sections [1 9 ] and the formalism of
Mo and Tsai [2 0 ]. These factors are almost independent
of xB for 1 < xB < 2 for all nuclei used. Since there are
no theoretical cross section calculations for xB > 2 , we
used the 1 < xB < 2 correction factors for 1 < xB < 3 .

We construct the ratios of inclusive cross sections as a
function of Q2and xB , with corrections for CLAS accep-
tance, and elementary electron-nucleon cross sections:

r(A, 3He) =
A(2 σep + σen)

3 (Zσep + Nσen)
3 Y(A)

AY(3He)
CA

rad (3 )

where Z and N are the number of protons and neutrons
in nucleus A, σeN is the electron-nucleon cross section,
Y is the normalized yield in a g iven (Q2,xB) bin [3 2 ] and
CA

rad is the ratio of the radiative correction factors for A
and 3He (CA

radA = 0 .9 5 and 0 .9 2 12C and 56Fe respec-
tively). In our Q2 rang e, the elementary cross section
correction factor A(2σep+σen)

3(Zσep+Nσen) is 1 .1 4 ± 0 .0 2 for C and
4He and 1 .1 8 ± 0 .0 2 for Fe. Fig . 1 shows the resulting
ratios integ rated over Q2> 1 .4 GeV2.

These cross section ratios a) scale the first time for
1 .5 < xB < 2 , which indicates that 2 -nucleon SRCs dom-
inate in this reg ion (see Ref. [1 0 ]), b) increase with xB

for 2 < xB < 2 .2 5 , which can be explained by scattering
off nucleons involved in moving 2 -nucleon SRCs, and c)
scale a second time at 2 .2 5 ≤xB ≤ 2 .8 , which indicates
that 3 -nucleon SRCs dominate in this reg ion.

Assuming that the scaling reg ions indicate the kine-
matical domain where the corresponding SRCs dominate,
the ratio of the per-nucleon SRC probabilities in nucleus
A relative to 3He, a2(A/3He) and a3(A/3He), are just
the values of the ratio r in the appropriate scaling reg ion.
a2(A/3He) is evaluated at 1 .5 < xB < 2 and a3(A/3He)

20

FIG. 2.9: A typical configuration for the j-nucleon correlation.

In relativistic theory the answer is more complicated. It seems fruitful for the theoretical analysis of hard phenomena
to define formally the notion of j-nucleon correlation. Look at a subsystem of j nucleons in the ground state having
invariant mass ⇤ jmN, where nucleons obtain large relative momenta due to hard short-range interactions between
all j nucleons. Typical example of the three-nucleon correlation is shown in fig. 2.8. Before a hard interaction the j
nucleons are in the average configuration (�i ⇥ �j ⇥ 1), j-nucleon correlation contribute to ⇥N

A(�, k⇥) in the region
� < j only due to momentum conservation. In the non-relativistic Schrödinger equation this kinematic decomposition
of j-nucleon correlations is not evident. Therefore one cannot relate simply n(k) to ⇥N

A(�, k⇥) for � � 2.
Though at �⌅ A A-nucleon correlation should dominate ⇥N

A(�, k⇥), in the region 1 < �⇤ A relative contributions
of di�erent configurations are determined by the competition of two factors: the small probability aj to find a
correlation with large j and the enhancement of higher correlations due to a slower decrease of their contribution
to ⇥N

A(�, k⇥) at large � (see eq. (2.43)). Therefore it seems natural to expect that at least in the region of not too
large � ⇥ 3 (which is probed until now) few-nucleon correlations (FNC) dominate. Thus, the nucleon density matrix
⇥N
A(�, k⇥) can be e�ectively expanded over the contribution of j-nucleon correlations ⇥j(�, k⇥):

1
A

⇥N
A(�, k⇥) =

A⇥

j=2

aj⇥j(�, k⇥). (2.38)

More accurate treatment is required to account for the c.m. motion of the j-nucleon configuration in the mean field
of the nucleus. It is expected that this e�ect should lead to small corrections except near the edge of the j-nucleon
correlation. This is because the scale of the repulsive potential is considerably larger than that for the long-range
potential.

The aj ’s in eq. (2.38) can be estimated on the basis of the non-relativistic Schrödinger equation for nuclear WF
since they are determined by the mean internucleon distances. The well known fact that the nucleon density in the
center of the nucleus is larger than near the surface leads to a certain dependence of aj on the atomic number. This
dependence can be estimated in the gas approximation where15 for j ⇤ A

aj ⇥ (1/A)
⇤

[⇥A(r)]jd3r. (2.39)

Here ⇥A(r) is the nucleon density in the coordinate space normalized according to
�

⇥A(r)d3r = A. The calculation
using the conventional fits of ⇥A(r), obtained in electron and proton scattering data [158, 159] leads to a rather similar
A dependence of aj , which can be roughly approximated as

a2 ⇥ A0.15; a3 ⇥ A0.22; a4 ⇥ A0.27 (2.40)

in the range A = 12� 207. Thus ⇥N
A(�, k⇥) should be a practically universal function of �, k⇥ in a wide �, k⇥ range.

In momentum space ⇥j(�, k⇥) corresponds to the contribution of j-nucleon configuration, where the large momentum
of the fast nucleon is balanced by the other (j � 1) nucleons of this configuration (see fig. 2.9). The momentum
dependence of ⇥2 is expected to be similar to that of the deuteron, since the short distance behaviour is independent
of the nucleus structure. (In principle some di�erence could arise from the presence of pp, pn pairs in spin singlet
states and di�erent orbital momenta of nucleons.) The calculation of n4He using the Reid potential is in agreement
with n(k) ⇥ ⇤2

D(k) [118].
To estimate ⇥j�3(�, k⇥ = 0) at large � we assume that a fast nucleon with �⌅ j collects the large momentum as

a result of j � 1 hard two-body collisions with other nucleons. A typical diagram for the three-nucleon correlation is
shown in fig. 2.8. The black blob in fig. 2.8 corresponds to the o�-energy-shell two-nucleon amplitude (solution of

15 We thank Prof. V.A. Khodel for the explanation, how these formulae can be obtained within the Fermi liquid theory. Similar expression
for a2 was discussed by Erikssons [157]. This estimate is rather rough, since gas approximation is not good if large hard core e�ects are
present.

for A> 12

Qualitative idea - to absorb a large Q at x>j at least j nucleons should come close together.  
For each configuration wave function is determined by local properties and hence universal. 
In the region where scattering of j nucleons is allowed, scattering off j+1 nucleons is a small 
correction.

Scaling of the ratios of (e,e’) cross sections

�eA(x, Q2)x>1 =
�

j=2

A
aj(A)

j
�j(x, Q2) �j(x > j, Q2) = 0

�A1(j � 1 < x < j, Q2)/�A1(j � 1 < x < j, Q2) = (A1/A2)aj(A1)/aj(A2)

Scaling of the ratios  FS80
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⇒
Note - local FSI interaction,

up to a factor of 2 for 
σ(e,e’), cancels in the ratio 

of σ’s

kmin=0.3 GeV
kmin=0.25 GeV

W − MD ≤ 50 MeV

Masses of NN system produced in 
the process are small - strong 

suppression of isobar, 6q degrees of 
freedom.

=
a2(A1)
a2(A2) |1.6>��1.3

Right momenta for onset of scaling of ratios !!!

ρ- Light-cone density
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Frankfurt, Day, Sargsian, MS 93



Universality of 2N SRC is confirmed by Jlab experiments!
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Probability of the high momentum component in nuclei per nucleon, 
normalized to the deuteron wave function

3

at large x, where scattering from nucleons below the
Fermi momentum is forbidden. If these high-momentum
components are related to two-nucleon correlations (2N-
SRCs), then they should yield the same high-momentum
tail whether in a heavy nucleus or a deuteron.
The first detailed study of SRCs in inclusive scattering

combined data from several measurements at SLAC [12],
so the cross sections had to be interpolated to identical
kinematics to form the ratios. A plateau was seen in the
ratio (σA/A)/(σD/2) that was roughly A-independent for
A ≥ 12, but smaller for 3He and 4He. Ratios from Hall B
at JLab showed similar plateaus [13, 14] and mapped out
the Q2 dependence at lowQ2, seeing a clear breakdown of
the picture for Q2 < 1.4 GeV2. However, these measure-
ments did not include deuterium; only A/3He ratios were
available. Finally, JLab Hall C data at 4 GeV [15, 16]
measured scattering from nuclei and deuterium at larger
Q2 values than the previous measurements, but the deu-
terium cross sections had limited x coverage. Thus, while
there is significant evidence for the presence of SRCs
in inclusive scattering, clean and precise ratio measure-
ments for a range of nuclei are lacking.
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FIG. 2: Per-nucleon cross section ratios vs x at θ=18◦.

Figure 2 shows the A/D cross section ratios for the
E02-019 data at a scattering angle of 18◦. For x > 1.5,
the data show the expected near-constant behavior, al-
though the point at x = 1.95 is always high because the
2H cross section approaches zero as x → MD/Mp ≈ 2.
This was not observed before, as the previous SLAC ra-
tios had much wider x bins and larger statistical uncer-
tainties, while the CLAS took ratios to 3He.
Table I shows the ratio in the plateau region for a range

of nuclei at all Q2 values where there was sufficient large-
x data. We apply a cut in x to isolate the plateau region,
although the onset of scaling in x varies somewhat with
Q2. The start of the plateau corresponds to a fixed value
of the light-cone momentum fraction of the struck nu-
cleon, αi [1, 12]. However, αi requires knowledge of the

initial energy and momentum of the struck nucleon, and
so is not directly measured in inclusive scattering. Thus,
the plateau region is typically examined as a function of
x or α2n, which corresponds to αi under the approxi-
mation that the photon is absorbed by a single nucleon
from a pair of nucleons with zero net momentum [12]. We
take the A/D ratio for xmin < x < 1.9, such that xmin

corresponds to a fixed value of α2n. The upper limit is
included to avoid the deuteron kinematic threshold.

TABLE I: r(A,D) = (2/A)σA/σD in the 2N correlation re-
gion (xmin < x < 1.9). We choose a conservative value of
xmin = 1.5 at 18◦, which corresponds to α2n = 1.275. We use
this value to determine the xmin cuts for the other angles.
The last column is the ratio at 18◦ after the subtraction of
the estimated inelastic contribution (with a systematic uncer-
tainty of 100% of the subtraction).

A θ=18◦ θ=22◦ θ=26◦ Inel.sub
3He 2.14±0.04 2.28±0.06 2.33±0.10 2.13±0.04
4He 3.66±0.07 3.94±0.09 3.89±0.13 3.60±0.10
Be 4.00±0.08 4.21±0.09 4.28±0.14 3.91±0.12
C 4.88±0.10 5.28±0.12 5.14±0.17 4.75±0.16
Cu 5.37±0.11 5.79±0.13 5.71±0.19 5.21±0.20
Au 5.34±0.11 5.70±0.14 5.76±0.20 5.16±0.22
⟨Q2⟩ 2.7 GeV2 3.8 GeV2 4.8 GeV2

xmin 1.5 1.45 1.4

At these high Q2 values, there is some inelastic contri-
bution to the cross section, even at these large x values.
Our cross section models predicts that this is approxi-
mately a 1–3% contribution at 18◦, but can be 5–10% at
the larger angles. This provides a qualitative explanation
for the systematic 5–7% difference between the lowest Q2

data set and the higher Q2 values. Thus, we use only the
18◦ data, corrected for our estimated inelastic contribu-
tion, in extracting the contribution of SRCs.
The typical assumption for this kinematic regime is

that the FSIs in the high-x region come only from rescat-
tering between the nucleons in the initial-state correla-
tion, and so the FSIs cancel out in taking the ratios [1–
3, 12]. However, it has been argued that while the ratios
are a signature of SRCs, they cannot be used to provide
a quantitative measurement since different targets may
have different FSIs [17]. With the higher Q2 reach of
these data, we see little Q2 dependence, which appears
to be consistent with inelastic contributions, supporting
the assumption of cancellation of FSIs in the ratios. Up-
dated calculations for both deuterium and heavier nuclei
are underway to further examine the question of FSI con-
tributions to the ratios [18].
Assuming the high-momentum contribution comes en-

tirely from quasielastic scattering from a nucleon in an
n–p SRC at rest, the cross section ratio σA/σD yields
the number of nucleons in high-relative momentum pairs
relative to the deuteron and r(A,D) represents the rela-
tive probability for a nucleon in nucleus A to be in such

Per nucleon cross section ratio at Q2=2.7 GeV2
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combined data from several measurements at SLAC [12],
so the cross sections had to be interpolated to identical
kinematics to form the ratios. A plateau was seen in the
ratio (σA/A)/(σD/2) that was roughly A-independent for
A ≥ 12, but smaller for 3He and 4He. Ratios from Hall B
at JLab showed similar plateaus [13, 14] and mapped out
the Q2 dependence at lowQ2, seeing a clear breakdown of
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Figure 2 shows the A/D cross section ratios for the
E02-019 data at a scattering angle of 18◦. For x > 1.5,
the data show the expected near-constant behavior, al-
though the point at x = 1.95 is always high because the
2H cross section approaches zero as x → MD/Mp ≈ 2.
This was not observed before, as the previous SLAC ra-
tios had much wider x bins and larger statistical uncer-
tainties, while the CLAS took ratios to 3He.
Table I shows the ratio in the plateau region for a range

of nuclei at all Q2 values where there was sufficient large-
x data. We apply a cut in x to isolate the plateau region,
although the onset of scaling in x varies somewhat with
Q2. The start of the plateau corresponds to a fixed value
of the light-cone momentum fraction of the struck nu-
cleon, αi [1, 12]. However, αi requires knowledge of the

initial energy and momentum of the struck nucleon, and
so is not directly measured in inclusive scattering. Thus,
the plateau region is typically examined as a function of
x or α2n, which corresponds to αi under the approxi-
mation that the photon is absorbed by a single nucleon
from a pair of nucleons with zero net momentum [12]. We
take the A/D ratio for xmin < x < 1.9, such that xmin

corresponds to a fixed value of α2n. The upper limit is
included to avoid the deuteron kinematic threshold.

TABLE I: r(A,D) = (2/A)σA/σD in the 2N correlation re-
gion (xmin < x < 1.9). We choose a conservative value of
xmin = 1.5 at 18◦, which corresponds to α2n = 1.275. We use
this value to determine the xmin cuts for the other angles.
The last column is the ratio at 18◦ after the subtraction of
the estimated inelastic contribution (with a systematic uncer-
tainty of 100% of the subtraction).

A θ=18◦ θ=22◦ θ=26◦ Inel.sub
3He 2.14±0.04 2.28±0.06 2.33±0.10 2.13±0.04
4He 3.66±0.07 3.94±0.09 3.89±0.13 3.60±0.10
Be 4.00±0.08 4.21±0.09 4.28±0.14 3.91±0.12
C 4.88±0.10 5.28±0.12 5.14±0.17 4.75±0.16
Cu 5.37±0.11 5.79±0.13 5.71±0.19 5.21±0.20
Au 5.34±0.11 5.70±0.14 5.76±0.20 5.16±0.22
⟨Q2⟩ 2.7 GeV2 3.8 GeV2 4.8 GeV2

xmin 1.5 1.45 1.4

At these high Q2 values, there is some inelastic contri-
bution to the cross section, even at these large x values.
Our cross section models predicts that this is approxi-
mately a 1–3% contribution at 18◦, but can be 5–10% at
the larger angles. This provides a qualitative explanation
for the systematic 5–7% difference between the lowest Q2

data set and the higher Q2 values. Thus, we use only the
18◦ data, corrected for our estimated inelastic contribu-
tion, in extracting the contribution of SRCs.
The typical assumption for this kinematic regime is

that the FSIs in the high-x region come only from rescat-
tering between the nucleons in the initial-state correla-
tion, and so the FSIs cancel out in taking the ratios [1–
3, 12]. However, it has been argued that while the ratios
are a signature of SRCs, they cannot be used to provide
a quantitative measurement since different targets may
have different FSIs [17]. With the higher Q2 reach of
these data, we see little Q2 dependence, which appears
to be consistent with inelastic contributions, supporting
the assumption of cancellation of FSIs in the ratios. Up-
dated calculations for both deuterium and heavier nuclei
are underway to further examine the question of FSI con-
tributions to the ratios [18].
Assuming the high-momentum contribution comes en-

tirely from quasielastic scattering from a nucleon in an
n–p SRC at rest, the cross section ratio σA/σD yields
the number of nucleons in high-relative momentum pairs
relative to the deuteron and r(A,D) represents the rela-
tive probability for a nucleon in nucleus A to be in such

Universality of 2N SRC is confirmed by Jlab experiments✺

Probability of the high momentum 
component in nuclei per nucleon, 
normalized to the deuteron wave 
function Per nucleon cross section ratio 

at Q2=2.7 GeV2 - E2-019-2011

Very good agreement between   three (e,e’) analyses for a2 (A)
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Our first result of 77  from backward proton production  a2(C) ~ 4 ÷ 5 

Dominant mechanism of fast nucleon production 
appears to be established !!!



Impressive progress in the last 15 years

EVA BNL  5.9 GeV protons  (p,2p)n 

(e,e’ pp), (e,e’pn)  Jlab   Q2= 2GeV2

Different probes, different kinematics - the same pattern of very 
strong correlation - Universality= factorization is the answer to a 
question: “How to we know that (e,e’pN) is not due to meson 
exchange currents?”

σ = nuclear (light cone)  density (spectral / decay function) ⊗ elementary cross section

�14

Further tests are necessary with different projectile, momentum transfer,…



12C(e,e’pp)

Directional correlation

γ

p

p
BG (off 
peak)

MCEEP Simulation with 
pair CM motion σCM=136 
MeV/c
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k=1.5 fm-1

k=2.2 fm-1

k=3.0 fm-1

k=3.5 fm-1

Points  are numerical calculation of the 
spectral functions of 3He and nuclear 
matter - curves two nucleon 
approximation from CSFS 91

Numerical calculations in NR quantum mechanics confirm dominance of two nucleon 
correlations in the spectral functions of nuclei at k> 300 MeV/c - could be fitted by a 
motion of a pair in a mean field   (Ciofi, Simula,Frankfurt,  MS - 91).  However  

numerical calculations ignored three nucleon correlations - 3p3h excitations. 
Relativistic effects maybe important rather early as the recoil modeling 
does involve k2/mN2 effects.
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nuclear calculations by smoothing out shorter-distance 
structure (and reducing high-momentum strength). 
The GCF calculation requires three additional input 
parameters: (a) the relative abundance of spin-1 (i.e. only 
pn-SRCs) to spin-0 (i.e. pp-, nn- and pn-SRCs) SRC pairs, 
(b) the width of the center-of-mass (CM) momentum 
distribution of SRC pairs and (c) the average excitation 
energy of the residual A-2 system after the pair knockout, 
3ef@∗ . For the aforementioned interactions (a) was 
extracted from fully theoretical many-body calculations of 
12C [11, 25] and (b) was extracted from data [26], leaving 
3ef@∗  as the only unconstrained parameter. 
To determine the systematic uncertainty of the GCF cross-
section calculation, we repeated it many times, varying the 
input parameters each time and using the spread in the 
resulting calculations as a measure of the calculation 
uncertainty. For example, 3ef@∗  was varied between 0 and 
30 MeV, corresponding to knockout of loosely and tightly 
bound nucleons, respectively.  See Methods for additional 
details. 
We compared the GCF cross sections to experimental data 
using Monte Carlo integration, randomly generating 
A(e,e’pN) events (assuming the reaction diagram shown in 
Extended Data Fig. 2) and weighting each by the calculated 
GCF cross section. Electron radiative effects were included 
via a peaking approximation where the radiated photon is 
emitted in the direction of either the incoming or outgoing 
electron. Interaction effects such as final state interactions 
(FSI) and single-charge exchange (SCX) of the outgoing 
nucleons [7, 8, 20, 21, 27 - 29] were accounted for using 
the Glauber calculations of Ref. [20], which agree well 
with experimental data [27 - 29]. As these effects are 
model-dependent, we chose to include them in the 
calculated cross sections, leaving the data fully model 
independent. We included detector acceptance and 
resolution effects through a simulation of the detector by 
smearing the momentum of each simulated particle based 
on the CLAS momentum reconstruction resolution and re-
weighting events according to the product of the detection 
efficiencies for each detected particle. Lastly, we discarded 
all simulated events that did not pass the event selection 
cuts that were applied to the data. See Methods for details. 
The resulting calculated 12C(e,e’pp) and 12C(e,e’p) yields 
for the two different NN interactions are shown in Fig. 2 
(a) and (b) as a function of 8.'//. The calculations are 
compared with the data and normalized to the integrated 
number of measured (e,e’p) events. The phenomenological 
AV18 interaction describes the measured 8.'// 
distribution over the entire measured missing-momentum 
range. The !EFT N2LO interactions describe the data well 
up to about 600 - 700 MeV/c, consistent with their cutoffs.  
The simplified AV4’ interaction, as expected, does not 
describe the momentum distributions well.  

Figure 2 (c) shows the measured 12C(e,e’pp) / 12C(e,e’p) 
event yield ratio as a function of 8.'//, which increases 
linearly from 400 to about 650 MeV/c and then appears to 
flatten out (see Extended Data Fig. 7 for similar behavior 
observed for Al, Fe and Pb). The observed increase in this 
ratio, i.e., the fraction of (e,e’p) events with a recoil proton, 
is qualitatively consistent with the overall trend expected 
by a transition from a predominantly tensor to a 
predominantly scalar interaction at high 8.'//. This 
interpretation is supported by the observation that at lower 
momenta (~ 400 – 650 MeV/c) the tensor-less AV4’ 
interaction fails to explain the measured ratio while the two 
are consistent within uncertainties at higher momenta 
where the effect of the tensor force is suppressed. In 
addition, by examining the ‘pure’ GCF model predictions, 
ignoring experimental effects, we find our data to be 
consistent with a calculated a ratio of ~1/3 at high-
momenta, which is equal to the scalar limit one obtains by 
simple pair counting, see Methods and Extended Data Fig. 
12 for details.  
We also observe that the effect of the !EFT interaction 
cutoff largely cancels in the 12C(e,e’pp) / 12C(e,e’p) yield 
ratio leading to agreement with both the AV18 predictions 
and the data.   

 
 

Fig. 3 | Nuclear spectral function at high momentum. 
Measured 12C(e,e’p) (a-d) and 12C(e,e’pp) (e-h) event yields 
shown as a function of 3.'// for different bins in (e,e’p) 
8.'//. The data are compared with theoretical calculations 
based on the GCF framework, using different models of the 
NN interaction. The arrows mark the expected energy for a 
stationary pair with relative momentum that equals the mean 
momentum of each missing-momentum bin (see Methods). 
The width of the bands and the data error bars show the model 
systematic uncertainties and data statistical uncertainties, 
respectively, each at the 1σ or 68% confidence level. 
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Due to the findings of the last few years at Jlab and BNL  SRC are not anymore 
an elusive property of nuclei !!

Practically all nucleons with momenta k≥300 MeV 
belong to two nucleon SRC correlations

Probability for a given proton  with momenta 600> k > 
300 MeV/c to belong to pn correlation is  ~ 18 times 
larger than for pp correlation

Probability for a nucleon to have momentum > 300 
MeV/c in medium nuclei is  ~25%

In heavy nuclei protons have in average higher momenta than neutrons.

Summary of the findings

BNL + Jlab +SLAC

BNL + Jlab

BNL + Jlab 04 +SLAC 93
The average fraction of 
nucleons in the various  
initial-state configurations of 
12C.

Jlab 18 -19

�18

anti Fermi step result



New stage of the  SRC studies 
 Open questions:

Accuracy of factorization ?

At what momentum transfer factorization sets in ?

Accuracy of universality ( same spectral/ decay functions  work for  
electron, photon, proton projectiles .

Three nucleon SRC (so far only in backward proton 
production and hints in (e,e’)  at x>2).

focus of pA studies on high precision p2H, p3He (hopefully 4He, 
C would be added at some point).  Exclusive measurements 

over large range of momentum transfer :  

p
2
H ! ppn, p

3
He ! pppn

Deuteron is a hydrogen atom of short range  nuclear structure studies

!19



The process pD→ppn  dual role:

(i) study of the deuteron wave function (at some point S and D wave 
separately 

(ii)  study wave package evolution over distances < 2 fm interference between 
impulse approximation, single and double rescatterings. Complicated 
pattern along the cones associated with initial and final hadrons. Can 
choose kinematics with minimal and maximal fsi.
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 D(↵, pt)Deuteron:

For two nucleon approximation we have in addition an angular condition that Lippman-
Schwinger type equation for NN interaction

=

T TV V

+

i i if f fn

 should lead to rotationally invariant scattering amplitudes (pretty lengthy proof) results in

 D(↵, pt) !  D(M2
NN ),M2

NN = 4

✓
m2 + p2t
↵(2� ↵)

◆
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Z
Ψ2
NN

✓
m2+ k2t
α(2�α)

◆
dαd2kt
α(2�α)

= 1

Spin zero /unpolarized case

Relation between LC and NR wf.∫
φ2(k)d3k = 1

Ψ2

NN

(

m2 + k2
t

α(2 − α)

)

=
φ2(k)

√

(m2 + k2)

Similarly for the spin 1 case we have two invariant vertices as in NR theory:

 hence there is a simple connection to the S- and D- wave NR WF of D

 D
µ ✏

D
µ = ū(p1)

�
�µG1(M

2
NN ) + (p1 � p2)µG2(M

2
NN )

�
u(�p2)✏

D
µ
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✓
m2 + p2t
↵(2� ↵)

◆
= m2 + k2 ! ↵ = 1 +

k3p
m2 + k2

For two body system in two nucleon approximation 
the biggest difference between NR and virtual nucleon approximation 
LC is in the relation of the wave function and the scattering amplitude

due to implicit presence of NN pairs in virtual nucleon approximation 

_

_

Nonlinear connection between momentum 
k in wave function and pN - momentum of 

spectator in the deuteron rest frame 

↵ =

✓q
m2 + p2N + p3,N

◆
/mD

Optimal kinematics- spectator nucleon has large LC fraction αs > 1 , 
momentum transfer -t=(p1-p3)2> 1 GeV2

Rescattering corrections can be reliably 
calculated using generalized eikonal 
approximation
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Ratio of the cross section calculated in the eikonal approximation at in the impulse 
approximation as a function of αs for different pt. Solid line is complete factorization of the 
hard amplitude. Study of SRC is optimal for small enough pt.
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Deuteron polarization effects where calculated for eD scattering for  
tensor polarization.  Analogous effects for deuteron polarized perpendicular to  the 
beam direction

However tensor polarization is preferable - smaller  rescattering effects

!26
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FIG. 7.6: (cont.)

and the corresponding wave functions is rather rigid. However, once this relationship is changed, e.g., by introducing
the transitions of two nucleons into a quark compound bag (QCB), the prediction for R(ps) changes significantly at
ps > 0.3 GeV/c, see, e.g., fig. 7.5b.96

It is worthwhile to emphasize that eqs. (7.3) and (7.4) predict a different momentum dependence at fixed angle
and at fixed nucleon momentum (fig. 7.6), It can be seen from fig. 7.6 that the calculation based on eq. (7.4) leads
to R ∼ ( 1

2 cos2 θ − sin2 θ), although a rather complicated angular dependence follows from eq. (7.3) (θ is the angle
between ps and the 3-axis). To our knowledge the discussed angular dependence of R(ps) is the clearest relativistic
effect suggested so far in the literature. Actually this is the only effect where the relativistic relation between k and
ps becomes important at momenta as low as 0.3 GeV/c.

Equation (7.3) predicts Q2 independence of R(ps). Besides, the same R(ps) is expected for different final states
like Nsp + N, Nsp + ∆, Nsp + N∗, . . .. Such a universality of R(ps) at fixed ps is a general feature of the two-
nucleon approximation (valid in all approaches, nonrelativistic, covariant, and light-cone). Thus, the independence
of w(k)/u(k) extracted from different measurements for the same spectator momentum would provide an important
check of the extraction procedure and of the role of the final state interaction.

At the same time one can expect that at large spectator momenta R(ps) would depend on Q2 in the transitional Q2

range 2− 4 GeV2, where scattering off the compressed nucleon configuration becomes important. This is because the
deformation of the bound nucleon wave function should be somewhat different for S- and D-waves due to the different
relative roles of the one- and two-pion exchange potentials. Indeed, the contribution of the two-pion exchange potential,
which leads to a larger deformation of the bound nucleon wave function (cf. the discussion in section 2 2.5 2.5.2), is
more important for the S-wave.

In the impulse approximation eq. (7.1) is also valid for the deep inelastic reaction e+D → e+p+X. The final state
interaction between the struck nucleon and the spectator is a correction because a large amount of energy (∼ 1 GeV)
is transferred to the interacting nucleon in an average process. Moreover, the contribution to the nucleon yield due to
the production of nucleons in γ∗N interaction (the direct mechanism) constitutes a small correction to the production
of spectator nucleons in a wide kinematical region, α = (

√
m2 + p2

s − ps3)/m > 1 − x. This region includes (for
sufficiently large x) emission of spectators in the forward direction.

Equation (7.1) may be modified due to suppression of the spectator nucleon yield (with α > 1 − x) as a result
of the final state interaction between hadrons produced in ℓN interaction and would-be spectators. However, the
suppression of the nucleon yield in different spin states should be rather close, at least at small pt, because secondary
hadron rescatterings mostly suppress the contribution of configurations in the deuteron wave function where p, n are

96 We are indebted to I. M. Narodetski for supplying numerical results for the QCB deuteron wave functions [405].
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Factorization test:  T20 should be 
universal - the same for various hard 
inclusive  and exclusive processes 

Mechanisms of violation of factorization: 
nonnucleonic degrees of freedom in D /EMC 
effect, fsi

105

FIG. 7.6: Angular dependence of (σ±−σ0)/⟨σ⟩ for the spectator distribution in the reaction e+D⃗ → N+X at different nucleon
momenta. Solid and dashed lines are predictions of relativistic theory and nonrelativistic quantum mechanics, respectively.

FIG. 7.6: (cont.)

for nucleon momenta ps ! 0.1 GeV/c (fig. 7.5a),95 although no significant effect is expected for ps ! 0.4 GeV/c in the
6q model (see the above discussion in section 7 7.1). The use of different realistic potentials with nuclear core leads
to quite similar expressions for R(ps), probably because in this framework the relationship between the phase shifts

95 Indeed, the qualitative picture of the ps dependence of R at not too large nucleon momenta within the deuteron (k/m ≪ 1) is quite
simple. It is well known that in corrdinate space, due to the presence of the D-wave, the charge distribution in the deuteron with spin
pointing in the direction of the 3-axis is “cigar-shaped”. Evidently due to the properties of the Fourier transform in momentum space
the deuteron with helicity ±1 has the form of a ball flattened in the direction of the 3-axis. As a result the yield of the backward
spectators is minimal for deuteron helicity ±1.
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to quite similar expressions for R(ps), probably because in this framework the relationship between the phase shifts

95 Indeed, the qualitative picture of the ps dependence of R at not too large nucleon momenta within the deuteron (k/m ≪ 1) is quite
simple. It is well known that in corrdinate space, due to the presence of the D-wave, the charge distribution in the deuteron with spin
pointing in the direction of the 3-axis is “cigar-shaped”. Evidently due to the properties of the Fourier transform in momentum space
the deuteron with helicity ±1 has the form of a ball flattened in the direction of the 3-axis. As a result the yield of the backward
spectators is minimal for deuteron helicity ±1.
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p D elastic scattering

unpolarized

M=0

d

V.Komarov 1976

^

!28



Looking for Δ ‘s, 6q…. in D

pD—> Δ++Δ- +p

p Δ++ 

Δ-αΔ

αΔ >1 - use of a broad distribution in αΔ >1  (cf. Larionov and MS-2019) 

-t=(p1-p3)2 > 2 GeV2  to reduce  charge exchange effects.

!29
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A challenging  question: what is QCD dynamics of large angle (in c.m.) hadron - 
hadron scattering?

In inclusive processes like DIS, hadron production perturbative QCD 
works starting at Q2 ~ 2 GeV2. 

pa pb

p’a

p’b
large angle scattering in c.m. frame

s = (pa + pb)
2

t = (pa � p0a)
2

Large t?What is  corresponding parameter in large angle scattering?

large c.m. scattering
 angle (t/s=const)??

To use the proton - nucleus scattering to study SRC we need a better understanding of 
exclusive large momentum transfer pN scattering-  
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⇡+

⇡+ ⇡+
u

u

d̄

d̄
⇡+

pQCD diagrams for elastic large angle scattering -- minimal number 
of constituents  + large momentum transfer between constituents

in the moment of interaction constituents of colliding 
hadrons are close together: r1 � r2 / 1/

p
�t
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How to test? Use two  important features of QCD 
(a) In high energies hadron interacts in frozen configurations over 
large distances - coherence length 

Lh = 2Eh/(M
2
n �m2

h) � RA

(b) Cross section of interaction of hadron in a small size configuration is small

Soft

Regime

Matching Region

Hard

Regime

For a dipole of transverse size d:     σ= cd2   in the lowest order in αs (two gluon exchange F.Low 75)

Here  S is sea quark distribution  for quarks 
making up the dipole.   

(Baym et al 93, FS&Miller  93 & 2000)

Important at 
Edipole < 10 GeV

⇤(d, xN ) =
⇥2

3
�s(Q2

eff )d2
�
xNGN (xN , Q2

eff )+2/3xNSN (xN , Q2
eff )

�

Projectile interacts in configurations with different interaction strength = color 
fluctuations) (relevant for AA collisions)



Problem is that to reach the regime where Lh > 2RA where one 
expect to  observe 100% CT one needs very large s  where cross 
sections are very small + only proton beams are doable

Observation of CT was suggested as a test of the origin of elastic 
large angle scattering by A.Mueller and S.Brodsky
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In the limit of very  small configurations in the projectile giving dominant 
interaction should be  small leading to 

�(h+A ! h+N + (A� 1)) = A�(h+N ! h+N)

referred to as color transparency (CT)



Recent analysis of D.Ashery (05) D. Ashery, Tel Aviv University

Fit to Gegenbau er Polynomials

Generate Acceptance-Corrected Momentu m distribu tions

Assu me dσ
du ∝ φ2

π(u, Q2 ) inboth k⊥ regions

Fit d istribu tions to:

dσ

du
∝ φ2

π(u, Q2 ) = 36u2 (1− u)2
(

1.0+ a2 C
3 /2
2 (2u − 1) + a4 C

3 /2
4 (2u − 1)

)2

For high kt : a2 = a4 = 0→ Asymptotic

For low kt : a2 = 0.30± 0.05, a4 = (0.5± 0.1) · 10−2 → Transition

Squeezing occurs already  before the leading term (1-z)z dominates!!!  
16

At high energies weakness of  interaction of point-like configurations with 
nucleons - is routinely used for explanation of DIS phenomena at  HERA.

First observation of high energy CT for π +A →”jet”+”jet” +A. (Ashery 
2000): 
  Confirmed predictions of pQCD (Frankfurt ,Miller, MS93) for A-dependence (much 
faster than in soft diffraction) & amplitude linear in A (100 % CT),  distribution 
over energy fraction, u carried by one jet, dependence on pt(jet), etc. 

(π wave funct)2

prediction

High energy color transparency is well established

Squeezing occurs  before the 
leading term (1-u)2u2 

dominates!!!  

Q2(� f.f.) � 4k2
t (jet)

⇐

strong squeezing in π form factor
 for Q2=6 GeV2 34



Main challenge for CT studies performed at intermediate energies 
is lack of freezing: |qqq> ( |qq> is not an eigenstate of the QCD 
Hamiltonian.  So even if we find an elementary process in which interaction is 
dominated by small size configurations - they are not frozen. They evolve - 
expand after interaction to average configurations and contract before 
interaction  from average configurations (Frankfurt,Farrar,Liu, MS88)

lcoh~ (0.4- 0.8) fm 
Eh[GeV]

p
p

p

pA→ pp (A-1) at large t and 
intermediate energies

lcoh

Quantum 
Diffusion 
model 

of expansionactually incoherence length

MC’s at RHIC assume 
much larger
 lcoh= 1fm Eh/mh; 

for pions  lcoh= 7 fm 
Eh[GeV] - a factor of 10 
difference !!!

-

e
p

e

eA→ ep (A-1) at large Q

lcoh
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⇥PLC(z) =
�

⇥hard +
z

lcoh
[⇥ � ⇥hard]

⇥
�(lcoh � z) + ⇥�(z � lcoh)

| PLC(t)i =
1X

i=1

ai exp(iEit) | it)i = exp(iE1)
1X

i=1

ai exp

✓
i(m2

i �m2
1)t

2P

◆
| it)i



Experimental evidence  for CT in electroproduction meson production

☀
γ* +A →π A*   transparency  increases
            with Q2 (Dutta et al 07)

A- dependence checks not 
only squeezing but small lcoh 

as well
0.7

0.725

0.75

0.775

0.8

0.825

0.85

0.875

0.9

1 2 3 4 5

Q
2
  (GeV/c)

2

!

Glauber model.

prediction of quantum diffusion model
Ghent

Miller &MS

☺
γ* +A →ρ A*   also report
 increase of transparency 
with Q2
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FIG. 3. (color online) Nuclear transparency as a function of
lc. The inner error bars are the statistical uncertainties and
the outer ones are the statistical and point-to-point (lc depen-
dent) systematic uncertainties added in quadrature. There is
an additional normalization systematic uncertainty of 1.9%
for carbon and 1.8% for iron (not shown in the figure) with ac-
ceptance and background subtraction being the main sources.
The carbon data has been scaled by a factor 0.77 to fit in the
same figure with the iron data.

the Frankfurt-Miller-Strikman (FMS) [38] calculations.250

While the KNS and GKM models yield an approximately251

linear Q2 dependence, the FMS calculation yields a more252

complicated Q2 dependence as shown in Fig. 4. The mea-253

sured slope for carbon corresponds to a drop in the ab-254

sorption of the ⇢0 from 37% at Q2 = 1 GeV2 to 32% at255

Q2 = 2.2 GeV2, in reasonable agreement with the cal-256

culations. Despite the di↵erences between these models257

in the assumed production mechanisms and SSC inter-258

action in the nuclear medium, they all support the idea259

that the observed Q2 dependence is clear evidence for260

the onset of CT, demonstrating the creation of small size261

configurations, their relatively slow expansion and their262

reduced interaction with the nuclear medium.263

The onset of CT in ⇢0 electroproduction seems to264265

occur at lower Q2 than in the pion measurements. This266

early onset suggests that di↵ractive meson production is267

the optimal way to create a SSC [26]. The Q2 depen-268

dence of the transparency ratio is mainly sensitive to the269

reduced interaction of the SSC as it evolves into a full-270

sized hadron, and thus depends strongly on the expansion271

length over which the SSC color fields expand to form a272

⇢0 meson. The expansion length used by the FMS and273

GKM models is between 1.1 and 2.4 fm for ⇢0 mesons274

produced with momenta from 2 to 4.3 GeV while the275

KNS model uses an expansion length roughly a factor of276

two smaller. The agreement between the observed Q2 de-277

pendence and these models suggests that these assumed278

expansion distances are reasonable, yielding rest-frame279

SSC lifetimes of about 0.5� 1⇥ 10�24 second.280

In summary, we have experimentally observed the for-281
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FIG. 4. (color online) Nuclear transparency as a function
of Q2. The inner error bars are statistic uncertainties and the
outer ones are statistic and point-to-point (Q2 dependent)
systematic uncertainties added in quadrature. The curves
are predictions of the FMS [38] (red) and GKM [37] (green)
models with (dashed-dotted and dashed curves, respectively)
and without (dotted and solid curves, respectively) CT. Both
models include the pion absorption e↵ect when the ⇢0 meson
decays inside the nucleus. There is an additional normaliza-
tion systematic uncertainty of 2.4% for carbon and 2.1% for
iron (not shown in the figure).

mation of small size configurations in di↵ractive ⇢0 meson282

electroproduction and its reduced interaction as it travels283

through the nucleus. We see a clear onset of color trans-284

parency and, based on the existing models, provide the285

first estimate of the expansion time (lifetime) for these286

exotic configurations. Having established these features,287

detailed studies of the theoretical models will allow the288

first quantitative evaluation of the structure and evolu-289

tion properties of the SSCs. Such studies will be further290

enhanced by future measurements [39], which will include291

additional nuclei and extend to higher Q2 values.292

TABLE I. Fitted slope parameters of the Q2-dependence of293

the nuclear transparency for carbon and iron nuclei. The re-294

sults are compared with theoretical predictions of KNS [36],295

GKM [37] and FMS [38].296

Measured slopes Model Predictions

Nucleus GeV�2 KNS GKM FMS

C 0.044± 0.015stat ± 0.019syst 0.06 0.06 0.025

Fe 0.053± 0.008stat ± 0.013syst 0.047 0.047 0.032

297

298299

The Jlab π,ρ data are consistent with CT predictions with coherence length 
  lcoh ~ 0.6fm ph [GeV] . Additional evidence for presence of small size 
components in mesons

El Fassi et al , 2012

T = (A/2)↵



So far we don’t have a  good understand the origin of one of 
the most fundamental hadronic processes in 
pQCD -large angle two body reactions (-t/s=const,  
s        )→∞  π +p → π +p, p +p → p +p,...
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Are large angle two body processes being  point like probes?

Dimensional quark counting rules:

number of constituents
 in initial  state

number of constituents
 in final state

d�

dt
= f(✓c.m.)s

(�
P

nqi�
P

nqf
+2)
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Indicates dominance of minimal Fock components of 
small size?

Describes regularities of studies hadronic reactions  pretty well

n-2=8

n-2=10

Quark counting expectations work pretty well: 

n-2=8
n-2=8
n-2=8
n-2=8

n-2=10

n-2=8

n-2=8
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Another interesting observation - cross sections of  reactions 
where  quark exchanges is allowed have much larger 
cross section. For example  -- pp elastic  >> pp  -elastic

_

K+ K+ K+

p p p

K+p→K+p

K- K-

K- K-

p p p

K-p→K-p

p
�(K+p ! K+p) � �(K�p ! K�p)

-

At NICA one can study: pp →pp, NΔ, ΔΔ, pn →pn, NΔ, ΔΔ



Experimental studies seem to indicate that in the case of ep scattering (eA—>ep A-1)

that CT effect is small up to Q2 where for meson s CT is already observed

We can relate the experimentally observed quantity TCH to

the convolution of the fundamental pp cross section with a

nuclear momentum distribution n!! ,p!mT",

TCH = Tpp#
!1

!2

d!# d2P!mTn!!,P!mT"

d"

dt
pp!s!!""

d"

dt
pp!s0"

, !15"

where s and s0 are defined by Eq. (5). Further noting that for
fixed beam energy the ratio of pp cross sections in Eq. (15) is
well approximated with a function of ! only, we can also

write

TCH = Tpp#
!1

!2

d!N!!"

d"

dt
pp!s!!""

d"

dt
pp!s0"

. !16"

Finally, if the range !!1 ,!2" is restricted to a narrow interval
around unity, we see that the relationship between the con-

ventional definition of nuclear transparency Tpp and the ex-

perimentally measured ratio TCH reduces to a simple propor-

tionality,

TCH $ TppN!1"!!2 − !1" . !17"

Our actual determination of the normalization of Tpp will

be directly obtained from Eq. (15) with the evaluation of the
integral by the Monte Carlo method, including a weighting

of the integrand by experimental acceptance. The shape of

the nuclear momentum distribution, taken from work by Ref.

[32], is used to calculate these integrals. With the normaliza-
tion fixed, a Monte Carlo program is used to select a region

of c.m. angular range where the geometrical acceptance is

the same for elastic and quasielastic events. Typically this

corresponds to a range of 86° to 90°c.m. as given in Table I.

E. Nuclear transparency for E850

The evaluation of the integral given in Eq. (15) using the
form the momentum distribution in Eq. (12) yields the
nuclear transparency, Tpp, given in Table I. Now the mea-

sured nuclear transparency can be directly compared to the

nuclear transparency calculated in the Glauber model [12].
The limits of the Glauber prediction are shown as the two

horizontal lines in Fig. 11(b). The limits of the Glauber pre-
diction and uncertainty were calculated using published as-

sumptions [33]. The magnitude of the Glauber nuclear trans-
parency is uncertain at the level indicated but there is a

general consensus that Glauber model predicts no significant

energy dependence for nuclear transparency in this momen-

tum range. However, from the pure perturbative quantum

chromodynamics (pQCD) perspective it is unclear what
would generate a scale for a peak in the nuclear transparency

near 9.5 GeV/c. The probability that the E850 result for the

carbon transparency is consistent with the band of Glauber

values is less than 0.3%, and compared to a best fit with a

constant transparency of 0.24, the probability is less than

0.8%.

F. Deuteron transparency

For the earlier experimental run of E850, we used CD2 as

well as CH2 targets. With an appropriate C subtraction we

are able to obtain a D/H transparency as given in Eq. (18),

TDH =
RCD2

− RC

RCH2
− RC

. !18"

We include essentially all of the deuteron wave function by

using an expanded !0 interval, 0.85# !0# 1.05. The TDH
transparencies for incident 5.9 and 7.5 GeV/c are 1.06±0.07

and 1.10±0.10 as listed in Table I. The fact that they are

consistent with 1.0 provides a further check on the normal-

ization of the nuclear transparency. Further details are to be

found in Ref. [28].

G. Discussion of angular dependence

Figure 12 shows the angular dependence as well as the

momentum dependence for the carbon transparencies from

E850 as reported in Ref. [1]. There is a significant decrease

FIG. 11. (a) (top frame) The nuclear transparency ratio TCH as a
function of beam momentum. (b) (bottom frame) The nuclear trans-
parency Tpp as a function of the incident beam momentum. The

events in these plots are selected using the cuts of Eq. (9), and a
restriction on the polar angles as described in the text. The errors

shown here are statistical errors, which dominate for these

measurements.

J. ACLANDER et al. PHYSICAL REVIEW C 70, 015208 (2004)

015208-10

Nuclear transparency TCH as a 
function of beam momentum 
(experiment used CH target)

Nuclear transparency Tpp as a function 
of beam momentum (defined so Tpp=1 - 
corresponds to the impulse 
approximation). Errors shown are 
statistical which dominate for these 
measurements

Long story of the studies of p+A → pp (A-1) at BNL by EVA exp.

PUZZLE 

Repeating measurements would be highly desirable.  
Also explore T in pd—> ppn  which I  discussed earlier

!40
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All mechanisms of large angle two body scattering 
predict  squeezing of the colliding hadrons. However 
they lead to a different  dependence  of the squeezing 
rate  on  t.  

Landshoff mechanism cannot explain quark exchange 
dominance ➙ it is possible that the rate of squeezing is 
stronger in processes where quark exchange is allowed

Squeezed configurations are present with significant 
probability in mesons (evidence from observations of CT & 
and exclusive processes in DIS). Squeezing is likely to be 
more effective for mesons.



- branching exclusive  processes of large c.m. angle scattering off a “a 
color singlet cluster” in a target/projectile (MS94)                         

t’
d

c

b

a

et

s’=(pd+pc)2
-t’ > few GeV2, -t’/ s’ ~1/2 
-t=const ~ 0 
  ➠  s’/s=y<<1, 
tmin=[ma2 -mb2/(1-y)]y

Limit:

Two papers: Kumano, MS, and Sudoh PRD 09; 
                             Kumano &MS  Phys.Lett. 2010

to study both CT (suppression of absorption)  in   2 → 2  &  hadron generalized 
parton distributions (GPDs)

☀

Another strategy - to use high energy CT to study dynamics of 
intermediate energy large angle scattering using new type of 
hard hadronic processes

Branching exclusive  processes



If squeezing occurs in large angle  2 →2 process,   
factorization in 2 →3 processes

GPD

N

t ’b
d

e (baryon)

c (meson)

t t

e (meson)N

GPD

t ’b d

c (baryon)

If the upper block is a hard (2 →2 ) process,   “b”, “d”, “c” are in small size configurations as 
well as exchange system (qq, qqq). Can use CT argument as in the proof of QCD factorization 
of  meson  exclusive production in DIS (Collins, LF, MS 97)

⇓
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M⇡N!⇡⇡N = GPD(N ! N)⌦  
i
⇡ ⌦H ⌦  ⇡f ⌦  ⇡0

f

2 →3 amplitude is convolution of  several blocks:



rus- 2∆ =YBUBE BAURAN¯ � GLCRywU FHxUNwzRAP yBAGERxHGRBA GB
GQN d [ d � d [ T [ 9 yEBFF FNyGRBA- �F NKCUwRANz RA GQN
GNKGfi GQN AHyUNBA =u¯ FCURGF wF d � p(p [ n� � T [ nfi GQNA
GQN p(p CwRE RAGNEwyGF JRGQ wABGQNE AHyUNBA =x¯ =d [ p(p � d¯-
dBGwGRBAF OBE FBOG wAz QwEz PUHBAF wEN GQN FwVN RA rRP- 1-

FHCCENFFNz xL CBJNEF BO F◦ RA GQN URVRG BO qD- “2¯- rBE
NKwVCUNfi RA GQN ywFN BO w zRwPEwV FQBJA RA rRP- 2fi GQN
CEByNFF CEByNNzF IRw d × Z(Z Λn� × Z(Z Λ m Λnfi JQNEN
n� RAzRywGNF wA RAGNEVNzRwGN xwELBARy FGwGNfi RA GQN UBJNE
xUBx BO GQRF ¨PHEN wAz FHxFNDHNAG GEwAFRGRBA dΛZ(Z × d
RA GQN HCCNE BAN- uA GQRF ywFNfi GQN wVCURGHzN RF FVwUU xN]
ywHFN GQN Z(Z CEBCwPwGRBA RF FHCCENFFNz xL GQN OwyGBE 0.{G◦{
“{G◦{ ≪ l1

d ¯fi JQNENwF GQN yBEENFCBAzRAP OwyGBE RA rRP- 1
RF 0.{G{ “{G{ ↔ l1

d ¯- rHEGQNEVBENfi GQN UwEPN VBVNAGHV
“{G◦{¯ RF wUFB RAIBUINz RA GQN UBJNE xUBx “d × Z(ZΛn�¯ RA
wzzRGRBA GB GQN HCCNE BAN- uG VNwAF GQwG VBEN QwEz PUHBA
NKyQwAPNF wEN RAIBUINz RA GQRF ywFNfi JQRyQ FHCCENFFNF GQN
yBAGERxHGRBA RA rRP- 2-
dNKGfi JN ANNz GB zNVBAFGEwGN GQwG wzzRGRBAwU FBOG RA]

GNEwyGRBAFfi JQRyQ wEN ABG FHCCENFFNz xL CBJNEF BO G◦fi wEN
ywAyNUNz BHG- jQN NwFRNFG JwL RF GB yBAFRzNE GQN CEB]
yNFF RA GQN ENFG OEwVN BO OEwPVNAGRAP AHyUNBA- dNPUNyGRAP
FCwyN]GRVN NIBUHGRBA BO GQN JwIN CwyTNGFfi JQRyQ RF UNPRG]
RVwGN RA GQN URVRG BO qD- “2¯fi JN BxFNEIN GQwG GEwAFINEFN
FRMN BO GQN CEBSNyGRUN wAz GJB BHGPBRAP QwzEBAF ANwE GQN
RAGNEwyGRBA CBRAG RF PRINA xL − 0.

[
{G◦{- tNAyNfi GQN yBUBE

GEwAFCwENAyL wEPHVNAGF NFFNAGRwU OBE GQN CEBBO BO OwyGBE]
RMwGRBA OBE NKyUHFRIN QwzEBA CEBzHyGRBA RA pui )Ω, wEN
wCCURywxUNfi wAz GQN FBOG RAGNEwyGRBAF wEN FHCCENFFNz xL wG
UNwFG w CBJNE BO 0.G◦- tNAyNfi JN ¨Az GQwG GQN UNwzRAP
yBAGERxHGRBA GB GQN d Λ d × d Λ m Λ n wVCURGHzN RF
PRINA xL GQN OwyGBERMNz OBEV-
jQN GEwAFRGRBA wVCURGHzN Kdd∗dmn RF JERGGNA wF w

rus- W∆ rwyGBERMwGRBA BO d [ d � d [ T [ n CEByNFF RAGB
d � Q[n wAz Q[d � Td wVCURGHzNF-

JQNEN Q RAzRywGNF GQN RAGNEVNzRwGN Z(Z QwzEBARy FGwGN wAz
GQN AHyUNBAfi ENFCNyGRINUL- jQRF yBEENFCBAzF GB GQN zRw]
PEwV BO rRP- W-
oBAFNDHNAGULfi GQN yEBFF FNyGRBA QwF GQN OBUUBJRAP

PNANERy OwyGBERMNz OBEV RA GQN URVRG BO qD- “2¯∆

zρ

zξz1CnizπyV
Γ e“ξφ Cni ¯ε“F

◦φ πyV¯φ “Ω¯

JQNEN ξ wAz Cni wEN GQN URPQG]yBAN OEwyGRBA wAz GEwAF]
INEFN VBVNAGHV ywEERNz xL n “RA GQN sfp ABGwGRBA
ξ Γ “0 ≈ <¯.“0 Λ <¯fi FNN FNyGRBA 2¯- jQN yEBFF FNyGRBA RF
FNCwEwGNz RAGB GQN OHAyGRBA e “wAz ε¯ JQRyQ zNCNAzF BA
GQN IwERwxUNF ξ wAz Cni “F◦ wAz πyV¯- jQN RAIwERwAG NA]
NEPL BO GQN FHxCEByNFF RF F◦ Γ “0≈ξ¯Ffi wAz GQN OHAyGRBA ε
RF GQN yEBFF FNyGRBA OBE GQN Z(Z]2Z FywGGNERAPfi wAz RG RF PRINA
xL GQN DHwET yBHAGRAP EHUNF wF ε“F◦φ πyV¯ ≡ “F◦¯A ,“πyV¯fi
JQNEN ,“πyV¯ RF w OHAyGRBA JQRyQ zNCNAzF BAUL BA GQN wA]
PUN πyVfi wAz A RF GQN GBGwU AHVxNE BO wUU RAGNEwyGRAP NUN]
VNAGwEL ¨NUzF- fQNABVNABUBPRywUULfi RG wCCNwEF VBEN AwG]
HEwU GB HFN OBE AHVNERywU FGHzRNF BO NKCNERVNAGwU F◦φ G◦ zN]
CNAzNAyN BO GQN NUNVNAGwEL ENwyGRBA md × cd fi JQNEN
c RF w VNFBAfi EwGQNE GQwA GQN wFLVCGBGRy DHwET yBHAGRAP
IwUHNF-
dBGN GQN yEBFF FNyGRBA wF PRINA xL qD- “Ω¯ zBNF ABG

zNCNAz BA GQN zRENyGRBA BO GQN GEwAFINEFN yBVCBANAG BO
GQN VBVNAGHV BO nfi BE NDHRIwUNAGUL GQN yEBFF FNyGRBA
zBNF ABG zNCNAz BA GQN wAPUN xNGJNNA GQN CUwAN OBEVNz
xL n wAz GQN GwEPNG AHyUNBA wAz GQN CUwAN BO GQN QwEz
ENwyGRBA- jQRF CEBIRzNF wA RVCBEGwAG GNFG BO OwyGBERMwGRBA
wF GQN ENFywGGNERAPFfi JQRyQ wEN zRFyHFFNz xNUBJfi UNwz GB

rus- 2∆ =YBUBE BAURAN¯ � GLCRywU FHxUNwzRAP yBAGERxHGRBA GB
GQN d [ d � d [ T [ 9 yEBFF FNyGRBA- �F NKCUwRANz RA GQN
GNKGfi GQN AHyUNBA =u¯ FCURGF wF d � p(p [ n� � T [ nfi GQNA
GQN p(p CwRE RAGNEwyGF JRGQ wABGQNE AHyUNBA =x¯ =d [ p(p � d¯-
dBGwGRBAF OBE FBOG wAz QwEz PUHBAF wEN GQN FwVN RA rRP- 1-

FHCCENFFNz xL CBJNEF BO F◦ RA GQN URVRG BO qD- “2¯- rBE
NKwVCUNfi RA GQN ywFN BO w zRwPEwV FQBJA RA rRP- 2fi GQN
CEByNFF CEByNNzF IRw d × Z(Z Λn� × Z(Z Λ m Λnfi JQNEN
n� RAzRywGNF wA RAGNEVNzRwGN xwELBARy FGwGNfi RA GQN UBJNE
xUBx BO GQRF ¨PHEN wAz FHxFNDHNAG GEwAFRGRBA dΛZ(Z × d
RA GQN HCCNE BAN- uA GQRF ywFNfi GQN wVCURGHzN RF FVwUU xN]
ywHFN GQN Z(Z CEBCwPwGRBA RF FHCCENFFNz xL GQN OwyGBE 0.{G◦{
“{G◦{ ≪ l1

d ¯fi JQNENwF GQN yBEENFCBAzRAP OwyGBE RA rRP- 1
RF 0.{G{ “{G{ ↔ l1

d ¯- rHEGQNEVBENfi GQN UwEPN VBVNAGHV
“{G◦{¯ RF wUFB RAIBUINz RA GQN UBJNE xUBx “d × Z(ZΛn�¯ RA
wzzRGRBA GB GQN HCCNE BAN- uG VNwAF GQwG VBEN QwEz PUHBA
NKyQwAPNF wEN RAIBUINz RA GQRF ywFNfi JQRyQ FHCCENFFNF GQN
yBAGERxHGRBA RA rRP- 2-
dNKGfi JN ANNz GB zNVBAFGEwGN GQwG wzzRGRBAwU FBOG RA]

GNEwyGRBAFfi JQRyQ wEN ABG FHCCENFFNz xL CBJNEF BO G◦fi wEN
ywAyNUNz BHG- jQN NwFRNFG JwL RF GB yBAFRzNE GQN CEB]
yNFF RA GQN ENFG OEwVN BO OEwPVNAGRAP AHyUNBA- dNPUNyGRAP
FCwyN]GRVN NIBUHGRBA BO GQN JwIN CwyTNGFfi JQRyQ RF UNPRG]
RVwGN RA GQN URVRG BO qD- “2¯fi JN BxFNEIN GQwG GEwAFINEFN
FRMN BO GQN CEBSNyGRUN wAz GJB BHGPBRAP QwzEBAF ANwE GQN
RAGNEwyGRBA CBRAG RF PRINA xL − 0.

[
{G◦{- tNAyNfi GQN yBUBE

GEwAFCwENAyL wEPHVNAGF NFFNAGRwU OBE GQN CEBBO BO OwyGBE]
RMwGRBA OBE NKyUHFRIN QwzEBA CEBzHyGRBA RA pui )Ω, wEN
wCCURywxUNfi wAz GQN FBOG RAGNEwyGRBAF wEN FHCCENFFNz xL wG
UNwFG w CBJNE BO 0.G◦- tNAyNfi JN ¨Az GQwG GQN UNwzRAP
yBAGERxHGRBA GB GQN d Λ d × d Λ m Λ n wVCURGHzN RF
PRINA xL GQN OwyGBERMNz OBEV-
jQN GEwAFRGRBA wVCURGHzN Kdd∗dmn RF JERGGNA wF w

rus- W∆ rwyGBERMwGRBA BO d [ d � d [ T [ n CEByNFF RAGB
d � Q[n wAz Q[d � Td wVCURGHzNF-

JQNEN Q RAzRywGNF GQN RAGNEVNzRwGN Z(Z QwzEBARy FGwGN wAz
GQN AHyUNBAfi ENFCNyGRINUL- jQRF yBEENFCBAzF GB GQN zRw]
PEwV BO rRP- W-
oBAFNDHNAGULfi GQN yEBFF FNyGRBA QwF GQN OBUUBJRAP

PNANERy OwyGBERMNz OBEV RA GQN URVRG BO qD- “2¯∆

zρ

zξz1CnizπyV
Γ e“ξφ Cni ¯ε“F

◦φ πyV¯φ “Ω¯

JQNEN ξ wAz Cni wEN GQN URPQG]yBAN OEwyGRBA wAz GEwAF]
INEFN VBVNAGHV ywEERNz xL n “RA GQN sfp ABGwGRBA
ξ Γ “0 ≈ <¯.“0 Λ <¯fi FNN FNyGRBA 2¯- jQN yEBFF FNyGRBA RF
FNCwEwGNz RAGB GQN OHAyGRBA e “wAz ε¯ JQRyQ zNCNAzF BA
GQN IwERwxUNF ξ wAz Cni “F◦ wAz πyV¯- jQN RAIwERwAG NA]
NEPL BO GQN FHxCEByNFF RF F◦ Γ “0≈ξ¯Ffi wAz GQN OHAyGRBA ε
RF GQN yEBFF FNyGRBA OBE GQN Z(Z]2Z FywGGNERAPfi wAz RG RF PRINA
xL GQN DHwET yBHAGRAP EHUNF wF ε“F◦φ πyV¯ ≡ “F◦¯A ,“πyV¯fi
JQNEN ,“πyV¯ RF w OHAyGRBA JQRyQ zNCNAzF BAUL BA GQN wA]
PUN πyVfi wAz A RF GQN GBGwU AHVxNE BO wUU RAGNEwyGRAP NUN]
VNAGwEL ¨NUzF- fQNABVNABUBPRywUULfi RG wCCNwEF VBEN AwG]
HEwU GB HFN OBE AHVNERywU FGHzRNF BO NKCNERVNAGwU F◦φ G◦ zN]
CNAzNAyN BO GQN NUNVNAGwEL ENwyGRBA md × cd fi JQNEN
c RF w VNFBAfi EwGQNE GQwA GQN wFLVCGBGRy DHwET yBHAGRAP
IwUHNF-
dBGN GQN yEBFF FNyGRBA wF PRINA xL qD- “Ω¯ zBNF ABG

zNCNAz BA GQN zRENyGRBA BO GQN GEwAFINEFN yBVCBANAG BO
GQN VBVNAGHV BO nfi BE NDHRIwUNAGUL GQN yEBFF FNyGRBA
zBNF ABG zNCNAz BA GQN wAPUN xNGJNNA GQN CUwAN OBEVNz
xL n wAz GQN GwEPNG AHyUNBA wAz GQN CUwAN BO GQN QwEz
ENwyGRBA- jQRF CEBIRzNF wA RVCBEGwAG GNFG BO OwyGBERMwGRBA
wF GQN ENFywGGNERAPFfi JQRyQ wEN zRFyHFFNz xNUBJfi UNwz GB

rus- 2∆ =YBUBE BAURAN¯ � GLCRywU FHxUNwzRAP yBAGERxHGRBA GB
GQN d [ d � d [ T [ 9 yEBFF FNyGRBA- �F NKCUwRANz RA GQN
GNKGfi GQN AHyUNBA =u¯ FCURGF wF d � p(p [ n� � T [ nfi GQNA
GQN p(p CwRE RAGNEwyGF JRGQ wABGQNE AHyUNBA =x¯ =d [ p(p � d¯-
dBGwGRBAF OBE FBOG wAz QwEz PUHBAF wEN GQN FwVN RA rRP- 1-

FHCCENFFNz xL CBJNEF BO F◦ RA GQN URVRG BO qD- “2¯- rBE
NKwVCUNfi RA GQN ywFN BO w zRwPEwV FQBJA RA rRP- 2fi GQN
CEByNFF CEByNNzF IRw d × Z(Z Λn� × Z(Z Λ m Λnfi JQNEN
n� RAzRywGNF wA RAGNEVNzRwGN xwELBARy FGwGNfi RA GQN UBJNE
xUBx BO GQRF ¨PHEN wAz FHxFNDHNAG GEwAFRGRBA dΛZ(Z × d
RA GQN HCCNE BAN- uA GQRF ywFNfi GQN wVCURGHzN RF FVwUU xN]
ywHFN GQN Z(Z CEBCwPwGRBA RF FHCCENFFNz xL GQN OwyGBE 0.{G◦{
“{G◦{ ≪ l1

d ¯fi JQNENwF GQN yBEENFCBAzRAP OwyGBE RA rRP- 1
RF 0.{G{ “{G{ ↔ l1

d ¯- rHEGQNEVBENfi GQN UwEPN VBVNAGHV
“{G◦{¯ RF wUFB RAIBUINz RA GQN UBJNE xUBx “d × Z(ZΛn�¯ RA
wzzRGRBA GB GQN HCCNE BAN- uG VNwAF GQwG VBEN QwEz PUHBA
NKyQwAPNF wEN RAIBUINz RA GQRF ywFNfi JQRyQ FHCCENFFNF GQN
yBAGERxHGRBA RA rRP- 2-
dNKGfi JN ANNz GB zNVBAFGEwGN GQwG wzzRGRBAwU FBOG RA]

GNEwyGRBAFfi JQRyQ wEN ABG FHCCENFFNz xL CBJNEF BO G◦fi wEN
ywAyNUNz BHG- jQN NwFRNFG JwL RF GB yBAFRzNE GQN CEB]
yNFF RA GQN ENFG OEwVN BO OEwPVNAGRAP AHyUNBA- dNPUNyGRAP
FCwyN]GRVN NIBUHGRBA BO GQN JwIN CwyTNGFfi JQRyQ RF UNPRG]
RVwGN RA GQN URVRG BO qD- “2¯fi JN BxFNEIN GQwG GEwAFINEFN
FRMN BO GQN CEBSNyGRUN wAz GJB BHGPBRAP QwzEBAF ANwE GQN
RAGNEwyGRBA CBRAG RF PRINA xL − 0.

[
{G◦{- tNAyNfi GQN yBUBE

GEwAFCwENAyL wEPHVNAGF NFFNAGRwU OBE GQN CEBBO BO OwyGBE]
RMwGRBA OBE NKyUHFRIN QwzEBA CEBzHyGRBA RA pui )Ω, wEN
wCCURywxUNfi wAz GQN FBOG RAGNEwyGRBAF wEN FHCCENFFNz xL wG
UNwFG w CBJNE BO 0.G◦- tNAyNfi JN ¨Az GQwG GQN UNwzRAP
yBAGERxHGRBA GB GQN d Λ d × d Λ m Λ n wVCURGHzN RF
PRINA xL GQN OwyGBERMNz OBEV-
jQN GEwAFRGRBA wVCURGHzN Kdd∗dmn RF JERGGNA wF w

rus- W∆ rwyGBERMwGRBA BO d [ d � d [ T [ n CEByNFF RAGB
d � Q[n wAz Q[d � Td wVCURGHzNF-

JQNEN Q RAzRywGNF GQN RAGNEVNzRwGN Z(Z QwzEBARy FGwGN wAz
GQN AHyUNBAfi ENFCNyGRINUL- jQRF yBEENFCBAzF GB GQN zRw]
PEwV BO rRP- W-
oBAFNDHNAGULfi GQN yEBFF FNyGRBA QwF GQN OBUUBJRAP

PNANERy OwyGBERMNz OBEV RA GQN URVRG BO qD- “2¯∆

zρ

zξz1CnizπyV
Γ e“ξφ Cni ¯ε“F

◦φ πyV¯φ “Ω¯

JQNEN ξ wAz Cni wEN GQN URPQG]yBAN OEwyGRBA wAz GEwAF]
INEFN VBVNAGHV ywEERNz xL n “RA GQN sfp ABGwGRBA
ξ Γ “0 ≈ <¯.“0 Λ <¯fi FNN FNyGRBA 2¯- jQN yEBFF FNyGRBA RF
FNCwEwGNz RAGB GQN OHAyGRBA e “wAz ε¯ JQRyQ zNCNAzF BA
GQN IwERwxUNF ξ wAz Cni “F◦ wAz πyV¯- jQN RAIwERwAG NA]
NEPL BO GQN FHxCEByNFF RF F◦ Γ “0≈ξ¯Ffi wAz GQN OHAyGRBA ε
RF GQN yEBFF FNyGRBA OBE GQN Z(Z]2Z FywGGNERAPfi wAz RG RF PRINA
xL GQN DHwET yBHAGRAP EHUNF wF ε“F◦φ πyV¯ ≡ “F◦¯A ,“πyV¯fi
JQNEN ,“πyV¯ RF w OHAyGRBA JQRyQ zNCNAzF BAUL BA GQN wA]
PUN πyVfi wAz A RF GQN GBGwU AHVxNE BO wUU RAGNEwyGRAP NUN]
VNAGwEL ¨NUzF- fQNABVNABUBPRywUULfi RG wCCNwEF VBEN AwG]
HEwU GB HFN OBE AHVNERywU FGHzRNF BO NKCNERVNAGwU F◦φ G◦ zN]
CNAzNAyN BO GQN NUNVNAGwEL ENwyGRBA md × cd fi JQNEN
c RF w VNFBAfi EwGQNE GQwA GQN wFLVCGBGRy DHwET yBHAGRAP
IwUHNF-
dBGN GQN yEBFF FNyGRBA wF PRINA xL qD- “Ω¯ zBNF ABG

zNCNAz BA GQN zRENyGRBA BO GQN GEwAFINEFN yBVCBANAG BO
GQN VBVNAGHV BO nfi BE NDHRIwUNAGUL GQN yEBFF FNyGRBA
zBNF ABG zNCNAz BA GQN wAPUN xNGJNNA GQN CUwAN OBEVNz
xL n wAz GQN GwEPNG AHyUNBA wAz GQN CUwAN BO GQN QwEz
ENwyGRBA- jQRF CEBIRzNF wA RVCBEGwAG GNFG BO OwyGBERMwGRBA
wF GQN ENFywGGNERAPFfi JQRyQ wEN zRFyHFFNz xNUBJfi UNwz GB

!44



Study of Hidden/Intrinsic Strangeness & Charm in hadrons

pp →Λsp (any other strange baryon)+ K+(K*) + p 

pp → φsp + p + p
pp →Dsp +  Λc+ p 

pp → K(K*)sp + Λ + p

π+p →K+sp +  K0+p 

BNL experiment: EVA has few candidate events
_

Can one use hadronic projectiles to study  baryo/meso baryonic 

and meso-mesonic  GPDs? Will be especially beneficial to study in parallel 

with 12 GeV program at Jlab (GPD studies is the main trust of their program)

Idea (MS95) is to consider new type of hard hadronic processes - 
branching exclusive  processes of large c.m.angle scattering on a 

“cluster” in a target/projectile or  scattering of two small clusters 
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pp� p� + M(⇥, �, ⇥⇥)

pp� p� + K+

��p� p� + M

��p� �����++,

��p� ���+�0,

pp� pN + M(⇥, �,⇥⇥)

��p� ���0p,

COMPASS data on tape 
for p , A targets

Many  other interesting channels
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Anybody from Dubna  COMPASS group is around?
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Conclusions

A diverse physics can be studied in (semi) exclusive processes which are 
within NICA range due to 4pi acceptance and possibility to take data at 
fixed s as a function of θc.m. and for fixed θc.m. as a function of s.

Complementary data will be forthcoming from FAIR/ PANDA (color transparency 
studies (Larionov & MS), factorization in SRC sensitive processes. 

In long run polarization in pp, pd - will allow to address many issues 
left unresolved from old studies like Krish effect. 

Exploring validity of factorization  at a wide range of t, s

further studies are necessary how large are t doable at early 
stage and which would require a full luminosity



Supplementary slides
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A detailed theoretical study of the reactions pp→NNπ,  NΔπ was 
recently  completed. Factorization  based on squeezing

Kumano, Strikman, and Sudoh 09

NP M

P

P P

P

P P

!
qqqqq

NP M

P

P P

P

P P

!
qqqqq

p

π0

pp

p NP M

P

P P

P

P P

!
qqqqq

NP M

P

P P

P

P P

!
qqqqq

Δ++

π-

pp

p

 49



Strategy of the first numerical analysis: 

●

Approximate the ERBL configurations by the pion and ρ-
meson poles 

 account for contributions of GPDs corresponding to
 qq pairs with S=1 and 0

_

●

●

Use experimental information about 
π- p→ π- p,  π- p →ρ- p 
π+ p→ π+ p,  π+ p →ρ+ p 

much better data are 
necessary for beams of 
energies of the order 10 

GeV - J-PARC!!!
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d⇤ = S

4
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(pa·pb)2�m4
N

�
�a,�b

�
�d,�e

|MNNN⇥B |2

⇥ 1
2Ec

d3pc

(2⇥)3
1

2Ed

d3pd

(2⇥)3
1

2Ee
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(2⇥)3 (2⇥)4�4(pa + pb � pc � pd � pe)

d⇤

d�d2pBT d⇥cm
= f(�, pBT )⌅(s�, ⇥cm)

s� = (1� �)s

⇤(s�, ⇥cm) � (s�)n
�(⇥cm)

↵ ⌘ ↵spec = (1� ⇠)/(1 + ⇠)
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N →Δ transitions
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��(z) =
⇥

3f�z(1� z),
�⇥(z) =

⇥
6f⇥z(1� z).
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