

Production of the neutral hyper-nucleus ${}^4_{\Lambda\Lambda}n$ at SPD NICA

Qiang Zhao

Institute of High Energy Physics, CAS

and Theoretical Physics Center for Science Facilities (TPCSF), CAS

zhaoq@ihep.ac.cn

- **1**. Motivation and possible existence of ${}^4_{\Lambda\Lambda}n$
- **2**. Production mechanism for ${}^4_{\Lambda\Lambda}n$
- **3**. Summary

1. Motivation and possible existence of ${}^{4}_{\Lambda\Lambda}n$

Nuclear chart with strangeness

Some hints from the first principle

With m_{π} =890 MeV at the SU(3) flavor symmetry point, L= 3.4, 4.5 and 6.7 fm, and b=0.145 fm, LQCD calculations are performed using an isotropic clover quark action [S. Beane et al, NPLQCD, PRC87, 034506 (2013)].

Local source adopted for 4-baryon system:

$$(8 \otimes 8 \otimes 8 \otimes 8)_{J^{\pi}=0^{+}} \rightarrow 1 \oplus 27 \oplus \overline{28},$$
$$(8 \otimes 8 \otimes 8 \otimes 8)_{J^{\pi}=1^{+}} \rightarrow 8 \oplus 10 \oplus \overline{10} \oplus \overline{35},$$
$$(8 \otimes 8 \otimes 8 \otimes 8)_{J^{\pi}=2^{+}} \rightarrow 8 \oplus 27,$$

$$I = 1, J^{\pi} = 0^+$$
: ${}_{\Lambda\Lambda}{}^4$ He, ${}_{\Lambda\Lambda}{}^4$ H, and $nn\Lambda\Lambda$

State	Α	S	Ι	J^{π}	SU(3) irrep	Binding energy [MeV]	~ <i>B/A</i> [MeV]
d (deuteron)	2	0	0	1^{+}	10	19.5(3.6)(3.1)(0.2)	10
nn (dineutron)	2	0	1	0^{+}	27	15.9(2.7)(2.7)(0.2)	8
$n\Sigma$	2	-1	$\frac{3}{2}$	1^{+}	10	5.5(3.4)(3.7)(0.0)	3
H (H-dibaryon)	2	-2	õ	0^+	1	74.6(3.3)(3.3)(0.8)	37
$n\Xi$	2	-2	0	1^{+}	8_A	37.7(3.0)(2.7)(0.4)	19
³ He, ³ H	3	0	$\frac{1}{2}$	$\frac{1}{2}$ +	35	53.9(7.1)(8.0)(0.6)	18
$^{3}_{\Lambda}$ H (hypertriton)	3	-1	0	$\frac{1}{2}$ +	35	53.9(7.1)(8.0)(0.6)	18
$^{3}_{\Lambda}$ H (hypertriton)	3	-1	0	$\frac{3}{2}$ +	10	82(8)(12)(1)	27
$^{3}_{\Lambda}$ He, $^{3}_{\Lambda}$ Ĥ, $nn\Lambda$	3	-1	1	$\frac{1}{2}$ +	27	69(5)(12)(0)	23
$^{3}_{\Sigma}$ He	3	-1	1	$\frac{3}{2}$ +	27	55(6)(10)(1)	18
⁴ He	4	0	0	0^+	28	107(12)(21)(1)	27
${}^{4}_{\Lambda}$ He, ${}^{4}_{\Lambda}$ H	4	0	0	0^+	28	107(12)(21)(1)	27
$^{4}_{\Lambda\Lambda}$ He, $^{4}_{\Lambda\Lambda}$ H, $nn\Lambda\Lambda$	4	0	0	0^+	27	156(16)(21)(2)	39

TABLE XVIII. Summary of the extracted ground-state binding energies of the nuclei and hypernuclei studied in this work.

Experimental evidence for neutral baryon system?

- $N\Lambda$ binding is not supported by either experiment or theory investigations.
- Still controversial for $nn\Lambda$ system.
- Marques et al, "Detection of neutron clusters", PRC65, 044006 (2002)
- HypHI Collaboration, "Search for evidence of ³_Λn by observing d + π⁻ and t + π⁻ final states in ...", PRC88, 041001(R) (2013)

Can we tolerate a neutral baryon system at all within the present available nuclear models ?

- A. Gal and H. Garcilazo, Phys. Lett. B 736, 93 (2014), [arXiv:1404.5855 [nucl-th]].
- H. Garcilazo and A. Valcarce, Phys. Rev. C 89, 057001 (2014).
- E. Hiyama, S. Ohnishi, B.F. Gibson and T.A. Rijken, *Three-body structure of the* nn Λ system with ΛN-ΣN coupling, PRC 89, 061302(R) (2014); arXiv:1405.2365 [nucl-th]

x	a_{nn} (fm)	$r_{\rm eff}({\rm fm})$	$\epsilon_{nn} ({\rm MeV})$	$E_{\rm ^3H}({\rm MeV})$	$E_{^{3}_{\Lambda}n}(\text{MeV})$
1.0	-23.7	2.78	unbound	-7.77	unbound
1.13	25.1	2.40	-0.066	-9.75	unbound
1.35	6.88	1.96	-1.269	-13.93	-1.272

Better understanding of N Λ potential is required.

Thomas collapse

The ratio of 3-body to 2-body bound state energies, E_3/E_2 , becomes very large if the range of the interaction decreases. Equivalently, for a given (short) range, $E_3/E_2 \rightarrow \infty$ if the coupling g approaches (from above) the minimal value g_2 required to bind two particles.

The potential energy is written as $g \sum v(r_{ij})$ where v is attractive or contains attractive parts.

The minimal coupling g_3 to bind three particles is smaller than g_2 , so that for $g_3 < g < g_2$ there is a "Borromean" 3-body bound state whose two-body subsystems are unbound.

Binding condition for a Borromean system:

Decompose the Hamiltonian *H* into sub-Hamiltonians:

$$H = H_1 + H_2 + \cdots$$

H is hardly negative if H_i is positive.

Borromean sector { g_2 : $g_{31} = g_{12} < 1, g_{23} < 1$ } with $g_3 < g < g_2$.

Borromean forbidden domain

- The scale is set such that the pair (m_i, m_j) is bound for $g_{ij} > 1$. This drawing corresponds to M/m = 1.2.
- Variants on cluster decompositions can lead to Borromean forbidden domain.

Richard and Fleck, PRL73, 1464 (1994); J.-L. Basdevant, A. Martin, J.-M. Richard, and T. T. Wu, Nucl. Phys. B 393, 111 (1993).

Borromean binding for four-body system

- The Borromean allowed domain is larger than the case of three-body system.
- There exists fully Borromean four-body bound state in the case of screened Coulomb interactions (see L. Bertini et al., PRA69, 042504 (2004)).

Possible binding due to 3-body interactions?

Three-body binding energy E_3 as a function of the effective range r_{eff} :

 $\begin{array}{l} -g \exp(-\mu r) \quad (\text{exponential}) \ , \\ -g \exp(-\mu r)/r \quad (\text{Yukawa}) \ , \\ g \exp[-2\mu \left(r-R\right)] - 2g \, \exp[-\mu \left(r-R\right)] \ (\text{Morse}) \end{array}$

- Fix the two-body scattering length at a = -10, i.e. just below the threshold for two-body binding. The coupling g is fixed by reproducing the nn, $n\Lambda$, and $\Lambda\Lambda$ scattering lengths a and effective range r_{eff} .
- Values (in fm) adopted for the scattering length and effective range parameter in two models: ESC08 and CEFT.

	ESC	08	CEFT		
Pair	а	r _{reff}	а	r _{eff}	
nn	-16.51	2.85	-18.9	2.75	
$(n\Lambda)_{s=0}$	-2.7	2.97	-2.9	2.65	
$(n\Lambda)_{s=1}$	-1.65	3.63	-1.51	2.64	
ΛΛ	-0.88	4.34	-1.54	0.31	

ESC08 model of the Nijmegen-RIKEN group:

- T. Fukuda *et al.*, in International Workshop on Strangeness Nuclear Physics (SNP12), Aug. 27–29, 2012, Osaka, Japan (unpublished).
- T. A. Rijken, M. M. Nagels, and Y. Yamamoto, Prog. Theor. Phys. Suppl. **185**, 14 (2010).
- T. A. Rijken, M. M. Nagels, and Y. Yamamoto, Few-Body Syst. 54, 801 (2013).

chiral effective field theory (CEFT):

- H. Polinder, J. Haidenbauer, and U.-G. Meissner, Phys. Lett. B 653, 29 (2007).
- J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meissner, A. Nogga, and W. Weise, Nucl. Phys. A 915, 24 (2013).

Three-body binding energy E_3 as a function of the effective range r_{eff} :

$$\begin{array}{l} -g \exp(-\mu r) & (\text{exponential}) , \\ -g \exp(-\mu r)/r & (\text{Yukawa}) , \\ g \exp[-2\mu \left(r-R\right)] - 2g \exp[-\mu \left(r-R\right)] \text{ (Morse)} \end{array}$$

Fix the two-body scattering length at a = -10, i.e. just below the threshold for two-body binding.

- In the regime of weak binding a variational method is adopted.
- E_3 is a quick increasing function of r_{eff} , which means that models with a very large effective range cannot generate much Borromean binding.
- The amount of Borromean binding does not depend dramatically on the potential shape.

Cautions:

- The effects of the $\Lambda N \leftrightarrow \Sigma N$ transitions in the ΛN interactions.
- The effects of the $\Lambda\Lambda\leftrightarrow \Xi N$ in the $\Lambda\Lambda$ interactions.

- Experimental evidence for ${}^{4}_{\Lambda\Lambda}n$ is crucial for clarifying some of those long-standing puzzling questions.
- The study of ${}^{4}_{\Lambda\Lambda}n$ relies on the final experimental results to decide.

2. Production mechanism for ${}^4_{\Lambda\Lambda}n$

• How to organize the ($\Lambda\Lambda$ nn) system?

 $T =_{\Lambda\Lambda}^{4} \mathbf{n} = (\Lambda\Lambda\mathbf{nn})$ with $I = \mathbf{0}, S = \mathbf{0}, L = \mathbf{0}$. Thus, $J = L + S = \mathbf{0}$. No Pauli blocking Groundstate: $J^P = \mathbf{0}^+$.

Wang, Richard and Zhao, PRC91, 014003 (2015); 1404.3473[nucl-th]

Production mechanism for $(\Lambda\Lambda nn)$ in deuteron-deuteron collision

Elementary transition: $p + p \rightarrow \Lambda + \Lambda + K^+ + K^+$.

Wang, Richard and Zhao, PRC91, 014003 (2015); 1404.3473[nucl-th]

Assumptions and approximations:

- The S-wave nuclear wavefunctions are dominant.
- The two K⁺ production is via the elementary process, $pp \rightarrow \Lambda \Lambda K^+ K^+$.
- The intermediate S₁₁(1535) excitations is sizeable near threshold.

• Other t-channel exchanges and baryon resonance excitations can also contribute.

Advantages of d - d collisions:

- Central production of $T(\Lambda \Lambda nn)$ is favored in order to have the largest wavefunction overlapping with the initial states;
- Relatively large momenta for the charged kaons;
- Smooth background in the missing mass spectrum;
- Even angular distributions for the background K^+ events.

• Missing mass spectrum for $(\Lambda\Lambda nn)$

By tagging the two K^+ in the final state, the production of the ($\Lambda\Lambda$ nn) will not suffer from nontrivial background. The signal will peak at the mass of the ($\Lambda\Lambda$ nn).

Wang, Richard and Zhao, PRC91, 014003 (2015); 1404.3473[nucl-th]

• Total cross section for $(\Lambda\Lambda nn)$

With $L = 10^{27} \sim 2 \times 10^{30} cm^{-2} s^{-1}$ at $E_{cm} = 6.7 \sim 28.0$ GeV, respectively, we estimate the number of events as

$$\begin{split} N_{min} &= \sigma \times L \times T \simeq 0.2 \ nb \times 10^{27} cm^{-2} s^{-1} \times 1 \ year \simeq 6.3 \\ N_{max} &= 0.2 nb \times 2 \times 10^{30} cm^{-2} s^{-1} \times 1 \ year \simeq 12000 \end{split}$$

Taking into account the efficiency corrections, about hundreds events are anticipated for one-year run.

Other interesting topics at NICA

1. Search for H-dibaryon ($\Lambda\Lambda$) in the missing mass spectrum of K^+K^+

•
$$p + p \rightarrow \Lambda + \Lambda + K^+ + K^+$$

H-dibaryon?

2. Search for pentaquark Θ^+

•
$$p + d \rightarrow \Lambda + \Lambda + n + K^{+} + K^{+}$$

 $\Theta^{+} \rightarrow n + K^{+}$

3. Summary

- 1. The neutral hypernuclei, if exist, would bring important insights into the three-body nuclear force.
- 2. More elaborate model-building is needed for the study of neutral hypernucleus ${}^{4}_{\Lambda\Lambda}$ n. However, it may rely on the experimental measurements to decide its existence. The deuteron-deuteron collisions at NICA and FAIR can directly search for its signals.
- 3. The *pp* and *pd* collisions can also probe some exotic nuclear systems in the region around two kaon production threshold.

Thanks for your attention!