Hypernuclei and charmed nuclei

Johann Haidenbauer

IAS & JCHP, Forschungszentrum Jülich, Germany

Jülich, October 6, 2020

(4回) (1日) (日)

Johann Haidenbauer Hypernuclei and charmed nuclei

Pyperon-nucleon interaction in chiral effective field theory

3 Hypernuclei

Johann Haidenbauer Hypernuclei and charmed nuclei

・ 同 ト ・ ヨ ト ・ ヨ ト

Interaction of strange baryons

- $\wedge N$ and ΣN scattering
 - \rightarrow Role of SU(3) flavor symmetry
- H dibaryon
 - Jaffe (1977) \rightarrow deeply bound 6-quark state with I = 0, J = 0, S = -2
 - many experimental searches but no convincing signal
 - Lattice QCD (2010) \rightarrow evidence for a bound H dibaryon ($\Lambda\Lambda$)
- Few-body systems with hyperons: ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He, ...
 - \rightarrow Role of three-body forces

large charge symmetry breaking ${}^{4}_{\Lambda}H \leftrightarrow {}^{4}_{\Lambda}He$

- (Λ, Σ) hypernuclei and hyperons in nuclear matter
 - → very small spin-orbit splitting: weak spin-orbit force existence of Ξ hypernuclei repulsive ∑ nuclear potential
- implications for astrophysics
 - \rightarrow hyperon stars
 - stability/size of neutron stars
 - softening of equation of state (hyperon puzzle)

<ロト < 同ト < 三ト < 三ト < 三 ・ へのく

∧N interaction: bulk properties are known

∧*p* cross section

Λ hypernuclei

Λp -> Λp

э

Johann Haidenbauer

Hypernuclei and charmed nuclei

BB interaction in chiral effective field theory

Baryon-baryon interaction in SU(3) chiral effective field theory (χ EFT) à la Weinberg (1990) [up to next-to-leading order (NLO)]

Advantages:

- Power counting systematic improvement by going to higher order
- Possibility to derive two- and three-baryon forces and external current operators in a consistent way
- degrees of freedom: octet baryons (N, Λ , Σ , Ξ), pseudoscalar mesons (π , K, η) Ingredients:
- 1) pseudoscalar-meson exchanges similar to meson-exchange potentials

BB interaction in chiral effective field theory

 short-distance dynamics remains unresolved – represented by contact terms (involve low-energy constants (LECs) that need to be fixed from data)

$$V_{B_1B_2 \to B_1'B_2'}^{CT} = \tilde{C}_{\alpha} + C_{\alpha}(p'^2 + p^2) \quad (C_{\beta}p'^2, C_{\gamma}p'p)$$

$$\alpha = {}^{1}S_{0}, {}^{3}S_{1}; \ \beta = {}^{3}S_{1} - {}^{3}D_{1}; \ \gamma = {}^{3}P_{0}, {}^{1}P_{1}, {}^{3}P_{1}, {}^{3}P_{2}$$

$$\times$$

No. of LECs is limited by SU(3) flavor symmetry:

6 at LO + 22 at NLO (in total) [for NN, ΛN , ΣN , $\Lambda \Lambda$, ΞN , ..., $\Xi \Xi$]

5 at LO + 5 at NLO (for S-waves; dominant for ΛN and ΣN scattering at low energies)

NLO interaction from 2013 (J.H. et al., NPA 915 (2013) 24)

fix all S-wave LECs from a fit directly to available low-energy Λp and ΣN scattering data (\approx 36 data points) no SU(3) constraints from the NN interaction (except for P-waves)

 \Rightarrow excellent description of data is achieved ($\chi^2 \approx 16 - 17$)

• NLO interaction from 2019 (J.H. et al., EPJA 56 (2020) 91)

consider SU(3) constraints from the *NN* interaction: 2 (NLO) LECs are fixed from the ${}^{1}S_{0}$ and ${}^{3}S_{1}$ *NN* phase shifts

explore consequences for the YN interaction (uncertainties)

explore consequences for hypernuclei (role of three-body forces)

Coupled channels Lippmann-Schwinger Equation

$$T^{\nu'\nu,J}_{\rho'\rho}(\rho',\rho) = V^{\nu'\nu,J}_{\rho'\rho}(\rho',\rho) + \sum_{\rho'',\nu''} \int_0^\infty \frac{dp''\rho''^2}{(2\pi)^3} V^{\nu'\nu'',J}_{\rho'\rho''}(\rho',\rho'') \frac{2\mu_{\rho''}}{p^2 - \rho''^2 + i\eta} T^{\nu''\nu,J}_{\rho''\rho}(\rho'',\rho)$$

 $\rho', \ \rho = \Lambda N, \ \Sigma N \quad (\Lambda\Lambda, \ \Xi N, \ \Lambda\Sigma, \ \Sigma\Sigma)$

LS equation is solved for particle channels (in momentum space) Coulomb interaction is included via the Vincent-Phatak method The potential in the LS equation is cut off with the regulator function:

$$V^{
u'
u,J}_{
ho'
ho}(
ho',
ho) o f^{\wedge}(
ho') V^{
u'
u,J}_{
ho'
ho}(
ho',
ho) f^{\wedge}(
ho); \quad f^{\wedge}(
ho) = e^{-(
ho/\Lambda)^4}$$

consider values $\Lambda = 500 - 650$ MeV [guided by NN, achieved χ^2]

ideally the regulator (Λ) dependence should be absorbed completely by the LECs in practice there is a residual regulator dependence (shown by bands below)

- tells us something about the convergence
- tells us something about the size of higher-order contributions

N integrated cross sections

NLO13: J.H., S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, NPA 915 (2013) 24

NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91

Jülich '04: J.H., U.-G. Meißner, PRC 72 (2005) 044005

Nijmegen NSC97f: T.A. Rijken et al., PRC 59 (1999) 21

data points included in the fit are represented by filled symbols!

イロト イポト イヨト イヨト

N integrated cross sections

NLO13: J.H. et al., NPA 915 (2013) 24 NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91 Jülich '04: J.H., U.-G. Meißner, PRC 72 (2005) 044005 Nijmegen NSC97f: T.A. Rijken et al., PRC 59 (1999) 21

ヘロン 人間 とくほ とくほう

	NLO13	NLO19	Jülich '04	NSC97f	experiment*
∧ [MeV]	500 • • • 650	500 • • • 650			
$a_s^{\wedge p}$	-2.91 ••• -2.90	-2.91 ••• -2.90	-2.56	-2.51	$-1.8^{+2.3}_{-4.2}$
$a_t^{\Lambda p}$	-1.61 ••• -1.51	-1.52 ••• -1.40	-1.66	-1.75	$-1.6^{+1.1}_{-0.8}$
a _s ^{Σ+p}	-3.60 · · · -3.46	-3.90 • • • -3.43	-4.71	-4.35	
$a_t^{\Sigma^+ p}$	0.49 • • • 0.48	0.48 • • • 0.42	0.29	-0.25	
χ ²	15.7 • • • 16.8	16.0 • • • 18.1	\approx 22	16.7	
<i>B</i> (³ _∧ H)	-2.30 · · · -2.33	-2.32 · · · -2.32	-2.27	-2.30	-2.354(50)

*G. Alexander et al., PR 173 (1968) 1452

Note: $B(^{3}_{\Lambda}H)$ is used as additional constraint in EFT and Jülich '04

 Λp data alone do not allow to disentangle ${}^{1}S_{0}$ (s) and ${}^{3}S_{1}$ (t) contributions

(a, r in fm; B in MeV)

<ロト <回 > < 回 > < 回 > < 回 > <

3

Difference between NLO13 and NLO19

Different coupling strength between the ΛN and ΣN channels ($V_{\Lambda N \leftrightarrow \Sigma N}$) consequences for in-medium properties: $\Lambda N - \Sigma N$ coupling is suppressed for increasing number of nucleons

dispersive effects in few-body systems:

 $V^{\text{eff}}_{\Lambda N}(E) pprox V_{\Lambda N} + V_{\Lambda N \to \Sigma N} \frac{1}{E - H_0} V_{\Sigma N \to \Lambda N}$

(propagator includes the energy of the spectator nucleons!)

Pauli blocking effects in nuclear matter: $V_{\Lambda N}^{eff}(\epsilon) \approx V_{\Lambda N} + V_{\Lambda N \to \Sigma N} \frac{Q}{\epsilon - H_0} V_{\Sigma N \to \Lambda N}$

EFT: in consistent few- and many-body calculations, differences in the two-body potential (in the $\Lambda N - \Sigma N$ coupling) are to be compensated by many-body forces

 $(\rightarrow \text{ tool for estimating effects from three-body forces!})$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

3- and many-body forces in chiral EFT (E. Epelbaum)

different hierarchy of 3BFs for other counting schemes (Hammer, Nogga, Schwenk, Rev. Mod. Phys. 85 (2013) 197)

イロト イポト イヨト イヨト

Three-nucleon forces: Explicit inclusion of the $\Delta(1232)$

• Explicit treatment of the Δ (Krebs, Gasparyan, Epelbaum, PRC 98 (2018) 014003):

LECs (from πN)	<i>C</i> 1	<i>C</i> ₂	<i>C</i> 3	<i>C</i> 4
Δ -less approach	-0.75	3.49	-4.77	3.34
Δ -full approach	-0.75	1.90	-1.78	1.50
Δ contribution	0	2.81	-2.81	1.40

- more natural size of LECs
- better convergence of EFT expansion (3NF from Δ(1232) appears at NLO!)
- applicability at higher energies

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Three-body forces

SU(3) χEFT 3BFs nominally at N²LO (S. Petschauer et al., PRC 93 (2016) 014001)

solve coupled channel (ΛN - ΣN) Faddeev-Yakubovsky equations: $\Rightarrow \Lambda NN$ "3BF" from Σ coupling is automatically included remaining 3BF expected to be small

• $\wedge NN$ 3BF via Σ^* excitation in SU(3) χ EFT with {10} baryons (NLO)

estimate $\land NN$ 3BF based on the Σ^* (1385) excitation (S. Petschauer et al., NPA 957 (2017) 347)

Hypernuclei studies based on chiral EFT potentials

Goal: perform few- and many-body calculations that take into account the full complexity of the underlying YN interaction (tensor coupling, ΛN - ΣN coupling, ...) in a consistent framework

Faddeev-Yakubovsky calculations

feasible only up to A = 4: ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H (0⁺), ${}^{4}_{\Lambda}$ H (1⁺), ${}^{4}_{\Lambda}$ He (0⁺), ${}^{4}_{\Lambda}$ He (1⁺) so far no (explicit) 3BFs included (Andreas Nogga, Jülich)

No-core shell model (NCSM)

calculations for LO interaction hypernuclei up to ¹³_AC have been considered (Wirth & Roth, PRL 117 (2016) 182501, PRC 100 (2019) 044313) so far no (explicit) 3BFs included

calculations for NLO interaction hypernuclei up to $\frac{7}{\Lambda}$ Li have been considered (Hoai Le, PhD thesis, Jülich 2020; arXiv:2008.11565) so far no 3BFs included

・ロト ・四ト ・ヨト ・ヨト 三日

Status - hypertriton

$$^{3}_{\Lambda}\text{H} \rightarrow \pi^{-} + \rho + d, \ \rightarrow \pi^{-} + ^{3}\text{He}$$

benchmark: (M. Jurič et al., 1973): 0.13 ± 0.05 MeV STAR (J. Adam et al., Nature Phys. 16 (2020) 409) $\binom{3}{\Lambda}H + \frac{3}{\Lambda}\bar{H}$: $0.41 \pm 0.12 \pm 0.11$ MeV (separation energy $E_{\Lambda} = B_{\Lambda} - B_d$)

Hypertriton (Faddeev calculation by A. Nogga)

- $\Lambda p^{1}S_{0} / {}^{3}S_{1}$ scattering lengths are chosen so that ${}^{3}_{\Lambda}$ H is bound
- cutoff variation:
- * $NNN \rightarrow$ is lower bound for magnitude of higher order contributions
- * ΛNN correlation with χ^2 of YN interaction
- \Rightarrow effect of three-body forces small?

NN potential: SMS N⁴LO+ (450) (P. Reinert et al., EPJA 54 (2018) 86)

코 에 제 코 어

Status - ${}^{4}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He

large CSB in 0⁺ ($\Delta \approx 233$ keV), small CSB in 1⁺ ($\Delta \approx -83$ keV)

F. Schulz et al. [A1 Collaboration] (2016), T.O. Yamamoto et al. [J-PARC E13 Collaboration] (2015)

・ 同 ト ・ ヨ ト ・ ヨ ト

⁴He results (Faddeev-Yakubovsky – by A. Nogga)

- LO: unexpected small cutoff dependence in 0⁺ result
- possible effects of long ranged three-body forces?

(no CSB in χ EFT YN potentials!)

ъ

Estimation of 3BFs based on NLO results

[^]_Λ³H
 (a) cutoff variation: ΔE_Λ (3BF) ≤ 50 keV
 (b) "3BF" from ΛN-ΣN coupling:

switch off ΛN - ΣN coupling in Faddeev-Yakubovsky equations: ΔE_{Λ} (3BF) \approx 10 keV expect similar/smaller ΔE_{Λ} from Σ^* (1385) excitation

イロン 不得 とくほう 不良 とう

$$\begin{array}{l} \text{(c)} \ {}^{3}\text{H: } 3\text{NF} \sim \ Q^{3} \left| \langle V_{\text{NN}} \rangle \right|_{^{3}\text{H}} \sim 650 \text{ keV} \\ (\left| \langle V_{\text{NN}} \rangle \right|_{^{3}\text{H}} \sim 50 \text{ MeV}; \ Q \sim \ m_{\pi} / \Lambda_{b}; \ \Lambda_{b} \simeq 600 \text{ MeV}) \\ & \left| \langle V_{\text{AN}} \rangle \right|_{^{3}\text{H}} \sim 3 \text{ MeV} \rightarrow \Delta E_{\Lambda} \ (3\text{BF}) \approx \ Q^{3} \left| \langle V_{\text{AN}} \rangle \right|_{^{3}\text{H}} \simeq 40 \text{ keV} \end{array}$$

• ${}^{A}_{\Lambda}$ H, ${}^{A}_{\Lambda}$ He (a) cutoff variation: ΔE_{Λ} (3BF) \approx 200 keV (0⁺) and \approx 300 keV (1⁺) (b) "3BF" from ΛN - ΣN coupling: ΔE_{Λ} (3BF) \approx 230 - 340 keV (0⁺), \approx 150 - 180 keV (1⁺)

 $^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ H(He) calculations with explicit inclusion of 3BFs are planned for the future

A possible case of a charmed nucleus

Y.A. Batusov et al., JETP Lett. 33 (1981) 52

A: primary vertex B: vertex decay of a charmed nucleus C: decay of \overline{D}^0 – signal of $c\overline{c}$ pair production

→ K⁺π[−] Interpretations $1_{A}Be \rightarrow \Lambda^{\circ}s \pi^{+}\pi^{+}\pi^{-}p p p$ $(\Lambda^+ c \rightarrow \Lambda^\circ s \pi^+ \pi^+ \pi^-)$ $Bc = 0 \sim 10 \text{ MeV}$ $2\Lambda^{4}$ He $\rightarrow \Lambda^{\circ}s \pi^{+}\pi^{+}\pi^{\circ}p p p$ $(\Lambda^+ c n \rightarrow \Lambda^o s p \pi^+ \pi^+ \pi^o)$ $\oplus \pi^{o}n \rightarrow \pi^{+}p$ Bc = 0 ~ 10 MeV (3) ${}^{6+k}_{C}C \rightarrow \Lambda s \pi^+ \pi^+ \pi^+ ppp nn + kn (k>=1)$ $(\Lambda^+ c p \rightarrow \Lambda^\circ s n \pi^+ \pi^+ \pi^\circ)$ $(\oplus \pi^{\circ} p \rightarrow \pi^{+} n)$ Bc = ?

イロト イポト イヨト イヨト

D° + X

p + Emulsion \rightarrow "Charmed HY" +

Many model calculations

meson-exchange picture, constitutent quark model, \dots SU(4) flavor symmetry, \dots

- Dover & Kahana, PRL 39 (1977) 1506
- S. Iwao, Lett. Nuovo Cim. 19 (1977) 647
- H. Bando & M. Bando, PLB 109 (1982) 1604
- Gibson, Bhamathi, Dover & Lehman, PRC 27 (1983) 2085
- Liu & Oka, PRD 85 (2012) 014015
- Huang, Ping & Wang, PRC 87 (2013) 034002 (2013)
- Gal, Garcilazo, Valcarce & Caramés, PRD 90 (2014) 014019
- Garcilazo, Valcarce & Caramés, PRC 92 (2015) 024006
- Maeda, Oka, Yokota, Hiyama & Liu, PTEP 2016 (2016) 023D2
- Ohtani, Araki & Oka, PRC 96 (2017) 055208
- Vidaña, Ramos & Jiménez-Tejero, PRC 99 (2019) 045208
- Garcilazo, Valcarce & Caramés, EPJC 79 (2019) 598
- ... but no empirical information

ヘロン 人間 とくほとくほとう

	scattering length (fm)		binding (separation) energy (MeV)			
∧ _c N	as	at	Λ _c N	³ ∧ _c He	⁴ _{Λc} He	5∧ _c Li
CTNN-d (Maeda)	5.31	5.01	≈ 5.3	pprox 20	?	?
Model A (Vidaña)	-2.60	-15.87	-	?	?	13.58
CQM (Garcilazo)	-0.86	-2.31	-	0.14	?	?
۸N	as	a _t	۸N	ÅH	<mark>4</mark> He	<mark>5</mark> He
χ EFT NLO19	-2.91	-1.52	-	0.10	1.63	pprox 3.1
experiment			-	0.13(5)	2.39(3)	3.12(2)

Note: $\Lambda_c \equiv \Lambda_c^+ \Rightarrow$ additional Coulomb repulsion

Maeda, Oka, Yokota, Hiyama & Liu, PTEP 2016 (2016) 023D2 - combined meson/quark exchange model Vidaña, Ramos & Jiménez-Tejero, PRC 99 (2019) 045208 - meson exchange (Jülich YN model + SU(4) symmetry) Garcilazo, Valcarce & Caramés, EPJC 79 (2019) 598 - constituent quark model

イロン 不得 とくほ とくほ とうほ

∧_cN results from lattice QCD simulations

HAL QCD: T. Miyamoto et al., NPA 971 (2018) 113

イロト 不同 トイヨト イヨト

Extrapolation of lattice results to physical pion mass

construct $\Lambda_c N \cdot \Sigma_c N$ potential in analogy to the $\Lambda N \cdot \Sigma N$ interaction perform extrapolation in line with chiral EFT

(JH, G. Krein, EPJA 54 (2018) 199)

$$V_{BN \to B'N}^{OPE} = -f_{BB'\pi}(m_{\pi}^{2})f_{NN\pi}(m_{\pi}^{2})\frac{(\sigma_{1} \cdot \mathbf{q})(\sigma_{2} \cdot \mathbf{q})}{\mathbf{q}^{2} + m_{\pi}^{2}}\mathcal{I}_{BN \to B'N}$$
$$V_{BN \to B'N}^{CT} = \tilde{C}_{\alpha} + C_{\alpha}(p'^{2} + p^{2})$$
$$\tilde{c}_{\alpha} \to \tilde{c}_{\alpha} + \tilde{D}_{\alpha}m_{\pi}^{2}, \quad c_{\alpha} \to c_{\alpha} + D_{\alpha}m_{\pi}^{2}, \quad \alpha \dots {}^{1}S_{0}, {}^{3}S_{1}$$

B, B' ... Λ_c , Σ_c $f_{BB'\pi}(m_{\pi}^2)$, $f_{NN\pi}(m_{\pi}^2)$... are taken from lattice simulations \tilde{C}_{α} , \tilde{D}_{α} , ... fitted to HAL QCD results at $m_{\pi} = 570$, 410 MeV

イロト 不得 トイヨト イヨト 三臣

Extrapolation of lattice results to physical pion mass

JH, G. Krein, EPJA 54 (2018) 199

 $a_s = -0.85 \cdots -1.00 \text{ fm}$ $a_t = -0.81 \cdots -0.98 \text{ fm}$ (at $m_\pi = 138 \text{ MeV}$)

イロン 不得 とくほ とくほ とうほ

Our predictions for charmed nuclei

JH, A. Nogga, I. Vidaña, EPJA 56 (2020) 56

- Few-body (Faddeev-Yakubovsky) calculation
 - ${}^3_{\Lambda_c}$ He unbound for $J^P = \frac{1}{2}^+, \frac{3}{2}^+$
 - ${}^4_{\Lambda_c}$ He bound for $J^P = 1^+$: $E_{\Lambda_c} \approx 0.10 0.40$ MeV
 - ${}^{4}_{\Lambda_{c}}$ He possibly bound for $J^{P} = 0^{+}$: $E_{\Lambda_{c}} \approx 0.00 0.10$ MeV
- perturbative many-body approach evaluate the energies of Λ_c single-particle bound states
 ⁵/_{Λ_c}Li and heavier charmed nuclei are bound

Note: Coulomb contribution (repulsion) increases with increasing atomic number \ensuremath{Z}

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Summary

Hyperon-nucleon interaction constructed within chiral EFT

- Approach is based on a modified Weinberg power counting, analogous to applications for NN scattering
- The potential (contact terms, pseudoscalar-meson exchanges) is derived imposing SU(3)_f constraints
- S = -1: Excellent results at next-to-leading order (NLO) Λp , ΣN low-energy data are reproduced with a quality comparable to phenomenological models

Hypernuclei and charmed nuclei

- for very light hypernuclei three-body forces should be small $(^3_{\Lambda}H)$ or moderate $(^4_{\Lambda}H, ^4_{\Lambda}He)$ needs to be quantified/confirmed by explicit inclusion of 3BFs
- ⁵_AHe, etc. ... effects of three-body forces could be more significant
- Study of charge-symmetry breaking in ${}^{4}_{\Lambda}H {}^{4}_{\Lambda}He$ is under way
- A hypernuclei data with higher precision are needed to quantify 3BFs
- Charmed (A_c) nuclei any additional empirical information is useful
- (same is true for double- A hypernuclei!)

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ⊙