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Interaction of strange baryons

ΛN and ΣN scattering
→ Role of SU(3) flavor symmetry

H dibaryon
Jaffe (1977)→ deeply bound 6-quark state with I = 0, J = 0, S = −2
many experimental searches but no convincing signal
Lattice QCD (2010)→ evidence for a bound H dibaryon (ΛΛ)

Few-body systems with hyperons: 3
ΛH, 4

ΛH, 4
ΛHe, ...

→ Role of three-body forces
large charge symmetry breaking 4

ΛH↔ 4
ΛHe

(Λ, Σ) hypernuclei and hyperons in nuclear matter
→ very small spin-orbit splitting: weak spin-orbit force

existence of Ξ hypernuclei
repulsive Σ nuclear potential

implications for astrophysics
→ hyperon stars

stability/size of neutron stars
softening of equation of state (hyperon puzzle)
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ΛN interaction: bulk properties are known
Λp cross section Λ hypernuclei
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FIG. 10 Spectroscopy of 12
ΛB from the E05-115 and E01-011

experiments. The area below the black line is the accidental
background. From Tang et al., 2014.

lent to a rotation plus a shift of the spectrometer so that
scattered electrons ≤ 4.5◦ hit the HES yokes and thus do
not enter the spectrometer acceptance. This angle was
chosen based on a figure of merit optimization between
hypernuclear yield and accidental background rate. The
tilt improved the true data rate by an order of magni-
tude while reducing accidental background. The beam
and spectrometer parameters are tabulated by Tang et
al. (2014). The experimental energy resolution to spe-
cific states was approximately 600 keV FWHM.

The 12
ΛB spectrum obtained in these experiments on

a 12C target is shown in Fig. 10, demonstrating the im-
proved resolution in the more recent E05-115 experiment
with respect to that in the older one E01-011 and also
with respect to the Hall A experiment E94-107 (Iodice
et al., 2007). In the upper panel of the figure, peaks 1,
2, 3, and 4 result from the pN → sΛ transition strength,
with peak 1 standing for the 12

ΛB g.s. doublet which to
a very good approximation is based on the 11B g.s. core
state. The other three peaks correspond to coupling the
sΛ hyperon to known excited levels in 11B. Peaks 5, 6,
7, and 8 result from the pN → pΛ transition strength
which extends further up into the continuum. Similar
spectra were reported for the charge-symmetric hyper-
nucleus 12

ΛC in (π+,K+) and (K−stop, π
−) experiments at

KEK (Hotchi et al., 2001) and at DAΦNE (Agnello et al.,
2005b), respectively. Yet, the JLab (e, e′K+) experiment
provides by far the most refined A= 12 Λ hypernuclear
excitation spectrum.

Very recently, the spectrum of another p-shell hypernu-
cleus, 10

ΛBe, was obtained in a JLab Hall C (e, e′K+) ex-
periment (Gogami et al., 2016a). This experiment gives
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FIG. 11 Energy levels of the Λ single-particle major shells
in A

ΛZ hypernuclei as a function of A−2/3. The curves are
obtained from a standard Woods-Saxon potential VWS repre-
senting the Λ-nucleus interaction with depth V0=−30.05 MeV,
radius R=r0A

1/3, where r0=1.165 fm, and diffusivity a =
0.6 fm. Updated from Millener, Dover, and Gal, 1988.

a BΛ value for a hypernucleus for which there are only
a few emulsion events (see Table I). It shows four clear
sΛ peaks as expected from the proton removal strength
from 10B [see Sec. I.C and Fig. 3 of Millener (2012)].

The (e, e′K+) experiments in Hall A were performed
using two existing high-relsolution (long flight path)
spectrometers and used a much higher electron-beam en-
ergy of ∼ 3.7 GeV to increase the K+ survival time. The
two essential features of the setup were the placement of
superconducting septum magnets before each spectrom-
eter to be able to take data at 6◦ and a ring-imaging
Cherenkov detector to provide unambiguous K+ identi-
fication. Data were taken using targets of 12C (Iodice
et al., 2007), 16O (Cusanno et al., 2009), and 9Be (Urci-
uoli et al., 2015). In particular, BΛ = 13.76 ± 0.16 MeV
was determined for 16

ΛN by using the Λ and Σ0 peaks
from the elementary (e, e′K+) reaction on the hydrogen
in a waterfall target for calibration.

6. Single-particle structure

Taking the positions of the Λ major shells as observed
in the (π+,K+) and other reactions, the Λ single-particle
energies show a very smooth A-dependence, which can be
reproduced by a simple Woods-Saxon potential VWS, as
shown in Fig. 11 for a data set that includes information
up to 208

ΛPb (Hasegawa et al., 1996). The data used in
the construction of Fig. 11 is given in Table IV. Because
the BΛ values in Table IV differ in several respects from
the values given in the original papers and reviews [see,
e.g., Hashimoto and Tamura (2006)], some explanation
is needed.

The most important overall change in the tabulated
BΛ values arises from the fact that the KEK (π+,K+)
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BB interaction in chiral effective field theory

Baryon-baryon interaction in SU(3) chiral effective field theory (χEFT)
à la Weinberg (1990) [up to next-to-leading order (NLO)]

Advantages:

Power counting
systematic improvement by going to higher order

Possibility to derive two- and three-baryon forces and external current operators
in a consistent way

• degrees of freedom: octet baryons (N, Λ, Σ, Ξ), pseudoscalar mesons (π, K , η)

Ingredients:

1) pseudoscalar-meson exchanges – similar to meson-exchange potentials
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BB interaction in chiral effective field theory
2) short-distance dynamics remains unresolved – represented by contact terms

(involve low-energy constants (LECs) that need to be fixed from data)

V CT
B1B2→B′

1B′
2

= C̃α + Cα(p′2 + p2) (Cβp′2, Cγp′p)

α = 1S0,
3S1; β = 3S1 − 3D1; γ = 3P0,

1P1,
3P1,

3P2

No. of LECs is limited by SU(3) flavor symmetry:
6 at LO + 22 at NLO (in total) [for NN, ΛN, ΣN, ΛΛ, ΞN, ..., ΞΞ]
5 at LO + 5 at NLO (for S-waves; dominant for ΛN and ΣN scattering at low energies)

NLO interaction from 2013 (J.H. et al., NPA 915 (2013) 24)

fix all S-wave LECs from a fit directly to available
low-energy Λp and ΣN scattering data (≈ 36 data points)
no SU(3) constraints from the NN interaction (except for P-waves)

⇒ excellent description of data is achieved (χ2 ≈ 16− 17)

NLO interaction from 2019 (J.H. et al., EPJA 56 (2020) 91)

consider SU(3) constraints from the NN interaction:
2 (NLO) LECs are fixed from the 1S0 and 3S1 NN phase shifts

• explore consequences for the YN interaction (uncertainties)
• explore consequences for hypernuclei (role of three-body forces)
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Coupled channels Lippmann-Schwinger Equation

Tν
′ν,J

ρ′ρ (p′, p) = Vν
′ν,J

ρ′ρ (p′, p)

+
∑
ρ′′,ν′′

∫ ∞
0

dp′′p′′2

(2π)3
Vν

′ν′′,J
ρ′ρ′′ (p′, p′′)

2µρ′′
p2 − p′′2 + iη

Tν
′′ν,J

ρ′′ρ (p′′, p)

ρ′, ρ = ΛN, ΣN (ΛΛ, ΞN, ΛΣ, ΣΣ)

LS equation is solved for particle channels (in momentum space)

Coulomb interaction is included via the Vincent-Phatak method

The potential in the LS equation is cut off with the regulator function:

Vν
′ν,J

ρ′ρ (p′, p)→ f Λ(p′)Vν
′ν,J

ρ′ρ (p′, p)f Λ(p); f Λ(p) = e−(p/Λ)4

consider values Λ = 500 - 650 MeV [guided by NN, achieved χ2]

ideally the regulator (Λ) dependence should be absorbed completely by the LECs
in practice there is a residual regulator dependence (shown by bands below)
• tells us something about the convergence
• tells us something about the size of higher-order contributions
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YN integrated cross sections
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Σ−
p -> Λn

NLO13: J.H., S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, NPA 915

(2013) 24

NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91

Jülich ’04: J.H., U.-G. Meißner, PRC 72 (2005) 044005

Nijmegen NSC97f: T.A. Rijken et al., PRC 59 (1999) 21

data points included in the fit are represented by filled symbols!
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YN integrated cross sections
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NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91

Jülich ’04: J.H., U.-G. Meißner, PRC 72 (2005) 044005

Nijmegen NSC97f: T.A. Rijken et al., PRC 59 (1999) 21
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YN scattering lengths [fm]

NLO13 NLO19 Jülich ’04 NSC97f experiment∗

Λ [MeV] 500 · · · 650 500 · · · 650

aΛp
s −2.91 · · · −2.90 −2.91 · · · −2.90 −2.56 −2.51 −1.8+2.3

−4.2

aΛp
t −1.61 · · · −1.51 −1.52 · · · −1.40 −1.66 −1.75 −1.6+1.1

−0.8

aΣ+p
s −3.60 · · · −3.46 −3.90 · · · −3.43 −4.71 −4.35

aΣ+p
t 0.49 · · · 0.48 0.48 · · · 0.42 0.29 −0.25

χ2 15.7 · · · 16.8 16.0 · · · 18.1 ≈ 22 16.7

B(3
ΛH) −2.30 · · · −2.33 −2.32 · · · −2.32 −2.27 −2.30 −2.354(50)

∗G. Alexander et al., PR 173 (1968) 1452

Note: B(3
ΛH) is used as additional constraint in EFT and Jülich ’04

Λp data alone do not allow to disentangle 1S0 (s) and 3S1 (t) contributions

(a, r in fm; B in MeV)
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Difference between NLO13 and NLO19
Different coupling strength between the ΛN and ΣN channels (VΛN↔ΣN )
consequences for in-medium properties:
ΛN–ΣN coupling is suppressed for increasing number of nucleons

dispersive effects in few-body systems:

N Λ N

N Λ N

Λ✉ ✉
✉ ✉

N Λ N

N Λ N

Σ✉ ✉
✉ ✉

N Λ N

N Λ N

Σ✉ ✉
✉✉

V eff
ΛN (E) ≈ VΛN + VΛN→ΣN

1
E−H0

VΣN→ΛN

(propagator includes the energy of the spectator nucleons!)

Pauli blocking effects in nuclear matter:
V eff

ΛN (ε) ≈ VΛN + VΛN→ΣN
Q

ε−H0
VΣN→ΛN

EFT: in consistent few- and many-body calculations, differences in the two-body
potential (in the ΛN–ΣN coupling) are to be compensated by many-body forces

(→ tool for estimating effects from three-body forces!)

Johann Haidenbauer Hypernuclei and charmed nuclei



3- and many-body forces in chiral EFT (E. Epelbaum)4 E. EpelbaumNuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

(short-range loop contribu-
tions still to be worked out)

have not been worked 
out yet

Nuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung
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Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

Two-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 2: Chiral expansion of the nuclear forces. Solid and dashed lines refer to
nucleons and pions. Solid dots, filled circles, filled squares, crossed squares and open
squares denotes vertices from the effective chiral Lagrangian of dimension ∆ = 0, 1,
2, 3 and 4, respectively.

and nucleons as the only explicit degrees of freedom and utilizing the rules of naive
dimensional analysis for few-nucleon contact operators, see [31–33] for alternative pro-
posals. We remind the reader that all diagrams shown in this and following figures
correspond to irreducible parts of the scattering amplitude and to be understood as
series of all possible time-ordered-like graphs for a given topology. As already ex-
plained before, the precise meaning of these diagrams and the resulting contributions
to the nuclear forces are scheme dependent.

The nucleon-nucleon potential has been calculated to fifth order (N4LO) in the
chiral expansion using dimensional regularization [24,34–41]. The expressions for the
leading and subleading 3NF can be found in Refs. [42–46] and [26, 27], respectively.
Apart from the contributions involving NN contact interactions, which still have to
be worked out, the N4LO terms in the 3NF can be found in Refs. [29, 47, 48]. The
leading contribution to the four-nucleon force (4NF) appears at N3LO and has been
derived in Refs. [26,27]. It is important to emphasize that the long-range parts of the
nuclear forces are completely determined by the spontaneously broken approximate
chiral symmetry of QCD along with the experimental and/or empirical information
on the pion-nucleon system needed to determined the relevant LECs in the effective
Lagrangian. In this sense, the long-range contributions to the nuclear forces and cur-
rents can be regarded as parameter-free predictions. Given that the chiral expansion
of the NN contact operators in the isospin limit contains only contributions at orders
Q2n, n = 0, 1, 2, . . ., the N2LO and the isospin-invariant N4LO corrections to the NN
potential are parameter-free. This also holds true for the N3LO contributions to the
3NF and 4NF. For calculations utilizing a formulation of chiral EFT with explicit

different hierarchy of 3BFs
for other counting schemes
(Hammer, Nogga, Schwenk,
Rev. Mod. Phys. 85 (2013) 197)

21

pionless chiral chiral+∆

LO — —

NLO — —

N2LO

FIG. 23 Order of 3NF contributions in pionless and chiral EFT and in EFT with explicit ∆ degrees of freedom (chiral+∆).
Open vertices in the last column indicate the differences of the low-energy constants in chiral and chiral+∆ EFT.

lengths, subleading three-body forces are suppressed by
two orders and enter only at N2LO. Some higher-order
calculations of few-nucleon observables exist but much
remains to be investigated in this sector. Particularly
interesting are the application of pionless EFT to halo
nuclei and low-energy electroweak reactions. Halo nuclei
are the most promising candidates for observing Efimov
physics in nuclei, while precise calculations of low-energy
reactions are relevant for nuclear astrophysics and neu-
trino physics. In particular, 3NFs play a prominent role
in two-neutron halo nuclei and larger halo systems. Pio-
nless EFT also predicts universal three-body correlations
that can be explored in nuclear reactions in this regime
and to test the consistency of different theoretical calcu-
lations (similar to the Tjon line/band).

In chiral EFT discussed in Sections IV, V and VI,
3NFs are suppressed compared to NN interactions. This
explains the phenomenological success of weaker three-
body forces of the Fujita-Miyazawa type. As summarized
in Fig. 23, 3NFs enter at N2LO, and their relative contri-
butions to observables can be understood based on the
power counting. Because the operator structure of the
leading 3NFs is strongly constrained, a global analysis
of few-body scattering and bound-state data with theo-
retical uncertainties appears feasible in the framework of
chiral EFT. This would allow for a determination of the
long-range ci couplings in the three-body sector. In addi-
tion, a consistent determination of two- and three-body
forces from such an analysis may help to resolve the Ay

puzzle in few-body scattering.
For applications of chiral EFT interactions to nuclear

structure, 3NFs play a central role, as discussed for light
and medium-mass nuclei and for nuclear matter. For
these many-body calculations, the RG/SRG evolution
leads to greatly improved convergence. A consistent evo-
lution of chiral 3NFs has been achieved in a harmonic-
oscillator basis and recently in momentum space. Impor-
tant open problems are an understanding of the 3NFs
induced by the SRG and to control higher-body forces,

which is necessary for the desired accuracy in nuclear
structure.

If ∆(1232) degrees of freedom are included, part of
the physics contained in the low-energy constants in chi-
ral EFT is made explicit in lower orders. As a conse-
quence, a 3NF of the Fujita-Miyazawa type appears al-
ready at NLO as shown in Fig. 23. Improved convergence
of the chiral expansion with explicit ∆ degrees of free-
dom is expected, but a full analysis of few-nucleon data
remains to be carried out. In addition, a chiral EFT
with explicit ∆’s would naturally explain why the con-
tributions from the long-range two-pion-exchange parts
of 3NFs dominate over the shorter-range parts in appli-
cations to neutron-rich nuclei and nuclear matter.

Three-nucleon forces are a frontier in the physics of nu-
clei that connects the systematic development of nuclear
forces in chiral EFT with the exploration of neutron-rich
nuclei at rare isotope beam facilities. The subleading
3NFs at N3LO are predicted in chiral EFT, without free
parameters, as is the case for N3LO 4N forces. In many
present calculations, the uncertainty of the leading 3NFs
likely dominates the theoretical uncertainties of the pre-
dicted observables. The derivation of N3LO 3NFs has
only been completed recently, and no calculation exists
with N3LO 3N or 4N forces beyond few-body systems.
Therefore, there is a window of opportunity to make key
discoveries and predictions. In addition to advancing mi-
croscopic calculations with 3NFs to larger and neutron-
rich nuclei, an important problem is to understand the
impact of 3NFs on global nuclear structure predictions,
e.g., for key regions in the r-process path where system-
atic theoretical predictions of extreme nuclei, often not
accessible in the laboratory, are needed.

Electroweak interaction processes are unique probes of
the physics of nuclei and fundamental symmetries, and
play a central role in astrophysics. Chiral EFT provides
a systematic basis for nuclear forces and consistent elec-
troweak currents, where pion couplings contribute both
to electroweak currents and to 3NFs. This opens up

Johann Haidenbauer Hypernuclei and charmed nuclei



Three-nucleon forces: Explicit inclusion of the ∆(1232)

Explicit treatment of the ∆ (Krebs, Gasparyan, Epelbaum, PRC 98 (2018) 014003):

N N N

N N N

✉ ② ✉ ⇒

N N N

N N N

✉ ✐ ✉ +

N N N

N N N

✉ ✉
✉ ✉

(ci) (ci)

∆

N2LO N2LO NLO

LECs (from πN) c1 c2 c3 c4

∆-less approach -0.75 3.49 -4.77 3.34
∆-full approach -0.75 1.90 -1.78 1.50
∆ contribution 0 2.81 -2.81 1.40

more natural size of LECs

better convergence of EFT expansion (3NF from ∆(1232) appears at NLO!)

applicability at higher energies
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Three-body forces
• SU(3) χEFT 3BFs nominally at N2LO (S. Petschauer et al., PRC 93 (2016) 014001)

SU(3) χEFT : (at LO!) :

Three-body forces

N Λ N

N Λ N

u y u

N Λ N

N Λ N

u y

N Λ N

N Λ N

y

(a) (b) (c)

N Λ N

N Λ N

Σ∗u u
u u

N Λ N

N Λ N

Σu u
u u

(d) (e)

(a) - (c) appear at N2LO
(d) appears at NLO – in EFT that includes decuplet baryons

(e) is already included by solving coupled-channel Faddeev equations

Johann Haidenbauer Baryon-baryon interactions

solve coupled channel (ΛN-ΣN) Faddeev-Yakubovsky equations:
⇒ ΛNN “3BF” from Σ coupling is automatically included
remaining 3BF expected to be small

• ΛNN 3BF via Σ∗ excitation in SU(3) χEFT with {10} baryons (NLO)

estimate ΛNN 3BF based on the Σ∗(1385) excitation (S. Petschauer et al., NPA 957 (2017) 347)
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Hypernuclei studies based on chiral EFT potentials

Goal: perform few- and many-body calculations that take into account
the full complexity of the underlying YN interaction (tensor coupling,
ΛN-ΣN coupling, ...) in a consistent framework

Faddeev-Yakubovsky calculations

feasible only up to A = 4: 3
ΛH, 4

ΛH (0+), 4
ΛH (1+), 4

ΛHe (0+), 4
ΛHe (1+)

so far no (explicit) 3BFs included
(Andreas Nogga, Jülich)

No-core shell model (NCSM)

calculations for LO interaction
hypernuclei up to 13

Λ C have been considered
(Wirth & Roth, PRL 117 (2016) 182501, PRC 100 (2019) 044313)

so far no (explicit) 3BFs included

calculations for NLO interaction
hypernuclei up to 7

ΛLi have been considered
(Hoai Le, PhD thesis, Jülich 2020; arXiv:2008.11565)

so far no 3BFs included
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Status - hypertriton
3
ΛH→ π− + p + d , → π− + 3He

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
EΛ (MeV)

π-
+p+d

π-
+

3
He

combined

Chaudhari (1968)

Keyes (1970)

Bohm (1968)

Juric (1973)

STAR (2019)

Gajewski (1967)

benchmark: (M. Jurič et al., 1973): 0.13± 0.05 MeV

STAR (J. Adam et al., Nature Phys. 16 (2020) 409) (3
ΛH+3

Λ̄
H̄): 0.41± 0.12± 0.11 MeV

(separation energy EΛ = BΛ − Bd )
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Hypertriton (Faddeev calculation by A. Nogga)
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• Λp 1S0 / 3S1 scattering lengths are chosen so that 3
ΛH is bound

• cutoff variation:
* NNN → is lower bound for magnitude of higher order contributions
* ΛNN - correlation with χ2 of YN interaction
⇒ effect of three-body forces small?

NN potential: SMS N4LO+ (450) (P. Reinert et al., EPJA 54 (2018) 86)
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Status - 4
ΛH, 4

ΛHe

The 4
ΛH–4

ΛHe complex & CSB since 2015
MAMI’s A1, 4

ΛH→4He+π−, PRL 114 (2015) 232501
J-PARC’s E13, 4He(K−, π−γ), PRL 115 (2015) 222501

CSB due to Λ-Σ0 mixing, strongly spin dependent,

dominantly in 0+g.s., large w.r.t. ≈−70 keV in 3H-3He.

Re-measure 4
ΛHeg.s. (E13 → E63).

12

large CSB in 0+ (∆ ≈ 233 keV), small CSB in 1+ (∆ ≈ −83 keV)

F. Schulz et al. [A1 Collaboration] (2016), T.O. Yamamoto et al. [J-PARC E13 Collaboration] (2015)
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4
ΛHe results (Faddeev-Yakubovsky – by A. Nogga)
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4
ΛHe  (J=0

+
)
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• LO: unexpected small cutoff dependence in 0+ result
• NLO: underbinding in χEFT and for phenomenological potentials
• possible effects of long ranged three-body forces?

(no CSB in χEFT YN potentials!)
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Estimation of 3BFs based on NLO results

3
Λ H
(a) cutoff variation: ∆EΛ (3BF) ≤ 50 keV
(b) “3BF” from ΛN-ΣN coupling:

switch off ΛN-ΣN coupling
in Faddeev-Yakubovsky equations:
∆EΛ (3BF) ≈ 10 keV
expect similar/smaller ∆EΛ from Σ∗(1385) excitation

N Λ N

N Λ N

Λ✉ ✉
✉ ✉

N Λ N

N Λ N

Σ✉ ✉
✉ ✉

(a) (b)

N Λ N

N Λ N

Σ✉ ✉
✉✉

N Λ N

N Λ N

Σ∗✉ ✉
✉ ✉

(c) (d)

(c) 3H: 3NF ∼ Q3 |〈VNN〉|3H ∼ 650 keV
( |〈VNN〉|3H ∼ 50 MeV; Q ∼ mπ/Λb ; Λb ' 600 MeV )

3
Λ H: |〈VΛN〉|3

Λ
H ∼ 3 MeV→ ∆EΛ (3BF) ≈ Q3 |〈VΛN〉|3

Λ
H ' 40 keV

4
Λ H, 4

Λ He
(a) cutoff variation: ∆EΛ (3BF) ≈ 200 keV (0+) and ≈ 300 keV (1+)
(b) “3BF” from ΛN-ΣN coupling:
∆EΛ (3BF) ≈ 230− 340 keV (0+), ≈ 150− 180 keV (1+)

3
Λ H and 4

Λ H(He) calculations with explicit inclusion of 3BFs are planned for the future
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A possible case of a charmed nucleus
Y.A. Batusov et al., JETP Lett. 33 (1981) 52

Charmed nuclei (experiment)p
An experimental result was reported

Dec.24,2004 Few Body Prof. Nakazawa’s presentation
A: primary vertex B: vertex decay of a charmed nucleus
C: decay of D̄0 – signal of cc̄ pair production
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Λc-nucleon interaction and charmed nuclei

Many model calculations

meson-exchange picture, constitutent quark model, ...
SU(4) flavor symmetry, ...

• Dover & Kahana, PRL 39 (1977) 1506
• S. Iwao, Lett. Nuovo Cim. 19 (1977) 647
• H. Bando & M. Bando, PLB 109 (1982) 1604
• Gibson, Bhamathi, Dover & Lehman, PRC 27 (1983) 2085
.
.
• Liu & Oka, PRD 85 (2012) 014015
• Huang, Ping & Wang, PRC 87 (2013) 034002 (2013)
• Gal, Garcilazo, Valcarce & Caramés, PRD 90 (2014) 014019
• Garcilazo, Valcarce & Caramés, PRC 92 (2015) 024006
• Maeda, Oka, Yokota, Hiyama & Liu, PTEP 2016 (2016) 023D2
• Ohtani, Araki & Oka, PRC 96 (2017) 055208
• Vidaña, Ramos & Jiménez-Tejero, PRC 99 (2019) 045208
• Garcilazo, Valcarce & Caramés, EPJC 79 (2019) 598

... but no empirical information
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ΛcN results from recent phenomenological models

scattering length (fm) binding (separation) energy (MeV)

ΛcN as at ΛcN 3
Λc

He 4
Λc

He 5
Λc

Li

CTNN-d (Maeda) 5.31 5.01 ≈ 5.3 ≈ 20 ? ?

Model A (Vidaña) -2.60 -15.87 - ? ? 13.58

CQM (Garcilazo) -0.86 -2.31 - 0.14 ? ?

ΛN as at ΛN 3
ΛH 4

ΛHe 5
ΛHe

χEFT NLO19 -2.91 -1.52 - 0.10 1.63 ≈ 3.1

experiment - 0.13(5) 2.39(3) 3.12(2)

Note: Λc ≡ Λ+
c ⇒ additional Coulomb repulsion

Maeda, Oka, Yokota, Hiyama & Liu, PTEP 2016 (2016) 023D2 - combined meson/quark exchange model
Vidaña, Ramos & Jiménez-Tejero, PRC 99 (2019) 045208 - meson exchange (Jülich YN model + SU(4) symmetry)
Garcilazo, Valcarce & Caramés, EPJC 79 (2019) 598 - constituent quark model
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ΛcN results from lattice QCD simulations

HAL QCD: T. Miyamoto et al., NPA 971 (2018) 113

1S0
3S1

T. Miyamoto et al. / Nuclear Physics A 971 (2018) 113–129 121

Table 3
Fit parameters of Vfit(r) defined in Eq. (19) for the �cN (effective) central potential, where a1 and a3 are expressed in 
unit of [MeV], a2 and a4 are expressed in unit of [fm], a5, a6 and a7 are expressed in unit of [MeV fm2], [fm−2] and 
[fm−1], respectively.

mπ
1S0 channel 3S1 channel

702(2) MeV 570(1) MeV 412(2) MeV 702(2) MeV 570(1) MeV 412(2) MeV

a1 1090(36) 1266(20) 1520(24) 458.1(53.8) 682.6(13.4) 853.8(17.2)
a2 0.09761(233) 0.09912(112) 0.1121(11) 0.09296(835) 0.1061(13) 0.1183(16)
a3 854.4(50.2) 892.5(27.3) 712.4(12.8) 761.6(71.8) 631.0(17.5) 569.2(11.2)
a4 0.4384(45) 0.4670(36) 0.6808(51) 0.4208(59) 0.4886(32) 0.6898(56)
a5 −18637(5796) −29804(6231) −45479(4116) −71142(38550) −19158(3687) −40798(3994)
a6 1.566(154) 1.182(84) 0.6635(229) 0.8462(1626) 1.163(77) 0.6144(221)
a7 3.493(122) 3.308(74) 2.367(25) 3.971(164) 3.071(66) 2.331(27)

Fig. 3. The phase shift (left) and the scattering length (right) for the �cN system in the 1S0 channel with particle 
physics sign convention of the scattering length. The inner error of the scattering length is statistical only, while the outer 
represents the total one (statistical and systematic errors added in quadrature).

the fitted potential in the infinite volume and extract its phase shifts from the asymptotic behavior 
of the wave function. Finally, the S-wave scattering length is calculated as

a = lim
k→0

tan δ00(k)

k
. (20)

Here we employ the particle physics convention for the definition of scattering length which has 
opposite sign from the historical sign convention of the baryon–baryon interaction.

Fig. 3 show the phase shift and the scattering length for the �cN system in the 1S0 channel for 
each ensemble, and the numerical values of the scattering length are listed in Table 4. Systematic 
errors of the scattering length are evaluated by the difference between the mean value at t − t0 and 
that at t − t0 +2, where t − t0 = 13, 11 and 9 for mπ � 700, 570 and 410 MeV case, respectively. 
Results of these observables indicate that the net interaction in the 1S0 channel is attractive at low 
energies (E � 40 MeV) in all cases, but not strong enough to form bound states. We also notice 
a tendency that the attraction becomes stronger as the pion mass decreases.2

2 We have reported preliminary results of the �cN potential at t − t0 = 9 in Ref. [40] and those at t − t0 = 10 in 
Ref. [41]. Since we have more statistics than those preliminary studies, we could analyze the potential at larger t − t0

124 T. Miyamoto et al. / Nuclear Physics A 971 (2018) 113–129

Fig. 5. The �cN effective-central potential in the 3S1 channel for each ensemble. The potential is calculated at t − t0 = 13
for mπ � 700 MeV case (Blue), t − t0 = 11 for mπ � 570 MeV case (Green) and t − t0 = 9 for mπ � 410 MeV case 
(Red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

Fig. 6. The phase shifts (left) and the scattering length (right) for the �cN system in the 3S1 channel with particle 
physics sign convention of the scattering length. The inner error of the scattering length is statistical only, while the outer 
represents the total one (statistical and systematic errors added in quadrature).

4.3. Spin independence of central potentials

In this subsection, we quantify a similarity between the 1S0 central potential and the 3S1
effective central potential. For this purpose, we further decompose the central potential in both 
JP = 0+ state (Eq. 18) and JP = 1+ state (Eq. 24) into the spin-independent central potential 
V0 and the spin-dependent one Vσ , which are extracted as

V0(�r) = 1

4

(
3V

(1+)
C (�r) + V

(0+)
C (�r)

)
(25)

Vσ (�r) = 1

4

(
V

(1+)
C (�r) − V

(0+)
C (�r)

)
. (26)

as = −0.13± 0.11 fm at = −0.17± 0.10 fm (at mπ = 700 MeV)
as = −0.24± 0.13 fm at = −0.29± 0.16 fm (at mπ = 570 MeV)
as = −0.49± 0.18 fm at = −0.51± 0.20 fm (at mπ = 410 MeV)
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Extrapolation of lattice results to physical pion mass

construct ΛcN-ΣcN potential in analogy to the ΛN-ΣN interaction
perform extrapolation in line with chiral EFT

(JH, G. Krein, EPJA 54 (2018) 199)

V OPE
BN→B′N = −fBB′π(m2

π)fNNπ(m2
π)

(σ1 · q) (σ2 · q)

q 2 + m2
π

IBN→B′N

V CT
BN→B′N = C̃α + Cα(p′2 + p2)

C̃α → C̃α + D̃αm2
π , Cα → Cα + Dαm2

π , α ... 1S0, 3S1

B, B′ ... Λc , Σc

fBB′π(m2
π), fNNπ(m2

π) ... are taken from lattice simulations

C̃α, D̃α, ... fitted to HAL QCD results at mπ = 570, 410 MeV
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Extrapolation of lattice results to physical pion mass

JH, G. Krein, EPJA 54 (2018) 199
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Our predictions for charmed nuclei

JH, A. Nogga, I. Vidaña, EPJA 56 (2020) 56

Few-body (Faddeev-Yakubovsky) calculation
• 3

Λc He unbound - for JP = 1
2

+, 3
2

+

• 4
Λc He bound - for JP = 1+: EΛc ≈ 0.10 − 0.40 MeV

• 4
Λc He possibly bound - for JP = 0+: EΛc ≈ 0.00 − 0.10 MeV

perturbative many-body approach
evaluate the energies of Λc single-particle bound states
• 5

Λc Li and heavier charmed nuclei are bound

EΛc ≈ 0.59 − 0.86 MeV ( 5
Λc Li) - core nucleus: 4He

EΛc ≈ 2.78 − 3.71 MeV (13
Λc N) - core nucleus: 12C

EΛc ≈ 4.35 − 6.36 MeV (41
Λc Sc) - core nucleus: 40Ca

EΛc ≈ 2.15 − 4.89 MeV (209
Λc Bi) - core nucleus: 208Pb

Note: Coulomb contribution (repulsion) increases with increasing
atomic number Z
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Summary

Hyperon-nucleon interaction constructed within chiral EFT

Approach is based on a modified Weinberg power counting, analogous to
applications for NN scattering

The potential (contact terms, pseudoscalar-meson exchanges) is derived
imposing SU(3)f constraints

S = −1: Excellent results at next-to-leading order (NLO)
Λp, ΣN low-energy data are reproduced with a quality comparable to
phenomenological models

Hypernuclei and charmed nuclei

for very light hypernuclei three-body forces should be small (3
ΛH) or moderate

(4
ΛH, 4

ΛHe)
needs to be quantified/confirmed by explicit inclusion of 3BFs
5
ΛHe, etc. ... effects of three-body forces could be more significant

Study of charge-symmetry breaking in 4
ΛH – 4

ΛHe is under way

Λ hypernuclei - data with higher precision are needed to quantify 3BFs

charmed (Λc ) nuclei - any additional empirical information is useful

(same is true for double-Λ hypernuclei!)
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