

Hadrons and dileptons production in pp and pn reactions in a few AGeV region with HADES

Izabela Ciepał for the HADES Collaboration

Institute of Nuclear Physics PAS

- Motivation of the HADES experiment,
 The HADES detector,
- 3) Electromagnetic structure of baryons,
- 4) Hadron and dilepton production in pp and pn,
- 5) Hyperons studies with HADES,
- 6) Conclusions and outlook.

elementary collisions: p+p, d(n)+p, π +p

e+e- invariant mass yield normalized to reference NN yield

$$R_{\rm AA} = \frac{1}{\langle A_{\rm part}^{\rm AA} \rangle} \frac{{\rm d}N^{\rm AA}}{{\rm d}M_{ee}} \left(\frac{{\rm d}N^{\rm NN}}{{\rm d}M_{ee}} \right)^{-1}$$

Motivations

Elementary collisions: p+p, d(n)+p, π +p

- role of barionic resonances in meson production
- dileptons reference for HI (extraction of excess radiation)
- vector meson-baryon couplings (em. transition FF, baryon structure)

e+e- sources @ SIS18 energies reference for HI

▣

Electromagnetic structure of baryons

SIS 18 18Tm (1.8 T magnets) U⁷³⁺: 1.0 GeV/u, 10⁹ ions/s **Ni**²⁶⁺: 2.0 GeV/u, 10¹⁰ **Protons**: 4.5 GeV, 2.8x10¹³/s **Secondary beams Pions**: 0.5-2 GeV/c

SIS 100 2T (4T/s) magnets Au: up to 8-10 GeV/u 10¹² ions/s Protons: up to 30 GeV 2.8x10¹³ ions/s Secondary beams Radioctive beams 1.5 GeV/u Anty-protons 30 GeV

HADES - first detector of FAIR Phase0 (2018-2021)

- Spectrometer with $\Delta M/M \sim 2\%$ at ρ/ω \checkmark **PID: TOF/tracking** \checkmark
- momenta, angles: \checkmark **MDC+** magnetic field
- full azimuthal, \checkmark
- polar angles 18^o 85^o \checkmark

RICH (electrons)

MDC IV MDC III

Magnet

Shower

Tofino

MDC II

MDC

TOF

HADES Detector High Acceptance Di-Electron Spectrometer

HADES experimental program - elemetary pp and pn collisions

p+p @1.25 GeV	- inclusive e+e-, π^0 , η - exclusive ppe+e-, ppe+e- γ , np π^+ , pp π^0 , Δ^+
d(n)+p @1.25 AGeV	- inclusive e+e- - exclusive npe+e-, $np\pi^+\pi^-(\Delta\Delta$ t-channel)
p+p @2.2 GeV	- inclusive e+e-, π^0 , η - exclusive ppe+e-, np π^+ , pp π^0
p+p @3.5 GeV	- inclusive e+e-, π^0 , η , ρ , ω - exclusive ppe+e-, $np\pi^+$, $pp\pi^0$ - hyperons: $pK^+\Lambda$, $\Sigma^{+/-}\pi^{-/+}pK^+$, Σ^+K^+n , $\Lambda(1405) \rightarrow \Sigma^{+/-}\pi^{-/+}$, $\Lambda p\pi^+K^0$, $\Sigma^0 p\pi^+K^0(\Delta^{++})$

Baryon resonances in pp @ 1.25GeV (π^+ , π^0) HADES : Eur. Phys. J. A51 (2015) 137

Teis resonance model

S. Teis et al., Z. Phys. A 356, 421 (1997)

→ quite good description
 of the HADES data but no
 info on production mechanisms

Partial Wave Analysis (PWA) Bonn-Gatchina

K.N. Ermakov et al., Eur. Phys. J. A 47, 159 (2011)

→ database W: 2066-2422 13 $pp\pi^0$ and 3 $pn\pi^+$

$$\begin{split} A &= \sum_{\alpha} A^{\alpha}_{\mathrm{tr}}(s) Q^{\mathrm{in}}_{\mu_1 \dots \mu_J}(SLJ) A_{2b}(j, S_2 L_2 J_2)(s_j) \\ &\times Q^{\mathrm{fin}}_{\mu_1 \dots \mu_J}(j, S_2 L_2 J_2 S' L' J). \end{split}$$

 $pp\pi^0$ $np\pi^+$ qu] (W) و 0.8 qu] (W) و 0.1 $M_{inv}(p\pi^+)$ $M_{inv}(p\pi^0)$ 0.6 0.1 0.4 0.05 0.2 1.2. 1.3 M^{inv}_{0π⁺} [GeV/c²] 1.4 1.2 1.3 M^{inv}_{nm⁰} [GeV/c²] 1.4 1.5 1.1 σ [mb] σ [mb] 10 $\Delta(1232)P_{33}$ N(1440)P₁₁ 2.3 2.35 2.4 2.2 2.3 2.4 2.1 √s[GeV] √ s [GeV]

 \rightarrow cross sections for resonance production

 $(\Delta +, \Delta + +, N(1440))$ and angular distributions

Ramalho, T. Peña, Phys. Rev. D 93, 033004 (2016)

e+e- pairs from pp @ 1.25GeV

HADES: Phys. Rev. C 95, 065205 (2017)

- \rightarrow Beam energy below η threshold to favor Δ
- \rightarrow Hadronic decay channel fixed from one pion data and Bonn-Gatchina PWA

 Δ^+ (1232) \rightarrow pe⁺e⁻ Dalitz decay pp \rightarrow ppe⁺e⁻ (bremsstrahlung)

First detailed study of a timelike em. Δ tFF

Double- π production in NN:

 \rightarrow simultaneous excitation of the two baryons and their subsequent decays

 \rightarrow important for inclusive spectra of e+e- (np & pp & HI)

$$\rightarrow N^{*}(1440) \rightarrow \Delta \pi$$
, N*(1440) $\rightarrow N\sigma$, N*(1440) $\rightarrow N\rho$, $\Delta \Delta$

e+e- pairs from pp and np reactions @ 1.25GeV (inclusive) HADES, PLB 690, 118 (2010)

Strong isospin effect !

OBE = **O**ne **B**oson **E**xchange *L.P. Kaptari*, *B. Kämpfer*, *NPA* 764 (2006) 338

 Δ Dalitz decay (gray band)– Iachello, Wan and Krivoruchenko

n+p data: data cannot (yet) be described well by OBE calculations

e+e- pairs from np reactions @ 1.25GeV

HADES: Eur. Phys. J. A 53, 149 (2017)

 $pp \rightarrow e+e-X \quad pp @ 2.2 \& 3.5 GeV$

e+e- pair cocktail fixed to known π / Δ / η / ω / ρ cross sections

$p+p \rightarrow ppe^+e^-$ @ 3.5 GeV

HADES: Eur. Phys. J A50 (2014) 82

GiBUU includes

J. Weil, H. van Hees, U. Mosel, Eur. Phys. J. A 48, 111 (2012) Vector Dominance Model (VDM)

• off-shell ρ coupling to resonances

 $R \rightarrow p\rho \rightarrow pe+e-$

Resonance model + strict VDM with ρ dominance

M. I. Krivoruchenko et al. Ann. Phys. 296, 299 (2002)

model1 = GiBUU, but with modified
 cross sections (HADES simul.):
 higher for N(1520),
 smaller for N(1440), N(1535)

Strangeness studies with HADES pp @ 3.5 GeV/c

Main interest:

- Kaon-nucleon potential (ChPT)
- Strange-baryons interactions with matter:
- → Equation Of State (EOS)
- → Neutron Stars compositions
- **Structure of strange baryons** (Λ , Σ) upcoming measurements @SIS (2021 accepted proposal)

Σ(1385)⁺ HADES: PRC 85, 035203 (2012) **Λ(1405)** HADES: PRC 87, 025201 (2013) **Λ(1520)** (upcoming paper in EPJ) e-m hyperon decays

Role of N* in strangeness production $pp \rightarrow pK^+ \Lambda$ *R. Munzer et al.*, *PLB* 785, 574 (2018)

- combined PWA of 7 data samples with exclusively reconstructed $p+p \rightarrow pK+$
- events measured by the COSY-TOF, DISTO, FOPI and HADES (2.14-3.5 GeV)
- N* coupling to Λ -K+ channel and p- Λ FSI

production amplitude of the N* resonances:

$\Lambda(1405)$ mass – theory

- \rightarrow the contribution of $\Sigma \pi$ is dominant (lower position of Λ peak)
- \rightarrow the measured cross sec. for $\Lambda(1405)$ is consistent with the ANKE data
- \rightarrow angular distributions (CM frame) of $\Lambda(1405)$ and $\Lambda(1520)$ are isotropic

MM(p,K⁺) [MeV/c²]

Hyperon Dalitz decays pp @ 4.5 GeV/c

Hyperons Dalitz decay pp @ 4.5 GeV/c

Feasibility study at 4.5 GeV/c – benchmark simulations: $pK^+\Lambda(1520)[\Lambda e^+e^-] \sigma=69.6 \,\mu b, BR=8.4*10^{-5}$ $pK^+\Lambda(1405)[\Lambda e^+e^-] \sigma=32.2 \,\mu b, BR=5.3*10^{-6}$ $pK^+\Sigma(1385)[\Lambda e^+e^-] \sigma=56.2 \,\mu b, BR=1.1*10^{-4}$

- Elementary collisions are very crucial for understanding hadron properties, also in dense nuclear matter,
- Hadronic channels have been studied: single and double pion production to obtain production cross sections for resonances,
- Results have been compared to various phenomenological models,
- Dileptons production (cocktail based on known sources):
 - reference for HI collisions
 - studies of em structure of baryons em tFF via Dalitz decays
 - spectra of decaying resonances
- Studies of strangeness production and em structure of hiperons
- 2021 accepted proposal at SIS18 to measure pp@ 4.5 GeV

Thank You for Your Attention