

Beam and Forward Silicon Detectors upgrade status

Bogdan Topko behalf on Forward Silicon Detectors team

6th Collaboration Meeting of the BM@N Experiment at the NICA Facility,

26 October 2020

Contents

- Beam profilometer status
- Beam tracker status
- Multiplicity trigger status
- Forward Silicon Detectors Configuration
- Silicon Detector Modules
- Front-end electronics test stand
- First FEE test results
- Power supply
- Assembling clean room

Detectors before the analyzing magnet

the NICA Facility, 26 October 2020

Simulation of deposited energy in 175 um silicon

Beam profilometer status

New vacuum flange construction with pneumatic drive to move the coordinate detector

Beam profilometer (32x32 strips, thickness 175 um) inside beam-pipe

First test of beam profilometer Si detector

Beam profilometer status summary

Silicon Detectors assembled on PCBs and tested (4 planes);

FEE electronics design in progress (first version tested with profilometer prototype) based on ASICs:

* VA163+TA32 (Dynamic Range: ±750 fC) – «light» ions up to argon;

* VA HDR16+TA32 (Dynamic Range \pm 30 pC) – «heavy» ions from krypton to gold;

Design in progress:

* 16-channel ADC and autonomous DAQ;

* cross-boards for assembling FEE PCBs on flange;

* mechanical supports/flange+cooling FEE/

Ready to assembly on flange – March 2021

Expected radiation damage of beam tracker

NIEL from 1 MeV neutron in Si (ASTM Standard E722-09): NIELn=0.00204 MeV*cm^{2*} g⁻¹ Hardness factor of 4A GeV Gold: NIELgold/NIELn≈470; Hardness factor of 4A GeV Krypton: NIELkrypton/NIELn≈98;

 $\frac{\text{Radiation conditions in beam tracker positions:}}{\text{Beam diameter: } d=3 \text{ cm;}}$ $\text{Flux of } ^{197}\text{Au: } F=10^6 \text{ nucl./sec;}$ Time of irradiation: t=2 months; $NIEL_{Au}(4 \text{ GeV/nucl})=9.6107 \cdot 10^{-1} \text{ MeV} \cdot \text{cm}^2 \cdot g^{-1};$ $\Phi_{1MeV} = \frac{NIEL_{Au}(4 \text{ GeV/nucl})}{NIEL_{neutrons}(1 \text{ MeV})} \cdot \Phi_{Au} =$ $= \frac{NIEL_{Au}(4 \text{ GeV/nucl})}{NIEL_{neutrons}(1 \text{ MeV})} \cdot \frac{4 \cdot F \cdot t}{\pi \cdot d^2} \approx 3.45 \cdot 10^{14} \text{ cm}^{-2}$

Expected total dark current increase after 2 months at +20 C° (without self annealing):

$$\Delta I = \alpha \cdot S_{beam} \cdot h_{detector} \cdot \Phi_{1MeV} = = 5 \cdot 10^{-17} \cdot 7.07 \cdot 175 \cdot 10^{-4} \cdot 3.45 \cdot 10^{14} = 2.13 \text{ mA}$$

SR-NIEL modeling results of NIEL in silicon detector for Kr³⁶⁺ (red) Expected dark current increase of 1 strip in beam zone: $\Delta I \approx 35 \ \mu A$ and Au⁷⁹⁺ (black) ions.

Expected radiation damage of beam tracker

Expected change of Neff and full depletion voltage (without self annealing):

 $N_{eff} = N_{0eff} \cdot e^{-c \cdot \Phi_{1MeV}} - \beta \cdot \Phi_{1MeV}$

$$U_{bias} + U_{bi} = \frac{e \cdot |N_{eff}| \cdot d^2}{2 \cdot \varepsilon_0 \cdot \varepsilon}$$

$$\begin{split} & U_{bias} \text{ - silicon detector bias voltage;} \\ & U_{bi} \approx 0.65 \text{ V} \text{ - built-in potential;} \\ & c = 5.5 \cdot 10^{-14} \text{ cm}^2 \text{ - donor removal coefficient;} \\ & \beta = 0.031 \text{ cm}^{-1} \text{ - acceptor creation coefficient} \\ & U_{bias} + U_{bi} \text{ increase up to 72 V} \\ & \text{after } \Phi_{1MeV} = 1 \cdot 10^{14} \text{ cm}^{-2} \text{ (10^6 Au ions/sec [2.5 weeks irrad.])} \\ & U_{bias} + U_{bi} \text{ increase up to 250 V} \\ & \text{after } \Phi_{1MeV} = 3.45 \cdot 10^{14} \text{ cm}^{-2} \text{ (10^6 Au ions/sec [2 months irrad.])} \end{split}$$

Expected max. power dissipation per 1 strip at V_{bias} = 250 V : $P \approx 8.75$ mW

n+ Side

p+ Side

Beam tracker coordinate plane (128x128 strips, thickness 175 um) assembled at vacuum flange.

Ø200

Beam pipe section with beam tracker modules $\pm 15^{\circ}$

the NICA Facility, 26 October 2020

First test of beam tracker Si detector

Beam tracker status summary

Silicon Detectors assembled on PCBs and tested (3 planes); FEE in progress based on ASICs:

* VATA64HDR16.2 with high Dynamic Range : -20 pC \div +50 pC; FEE design for «light» ions based on VA163+TA32 (Dynamic Range : \pm 750fC) – will be started after VATA64HDR16.2 first tests;

Design in progress:

* cross-boards for assembling FEE PCBs on flange;

* mechanical supports/flange+cooling FEE/

Ready to assembly on flange: February – March 2021

First test of beam tracker Si detector

General view of multiplicity trigger which consists of 2 half-planes (8 silicon strip trapezoid detectors, thickness 525 um) and 2 FEE boards.

Multiplicity trigger detector section (8 strips)

Multiplicity trigger status summary

Trapezoid detectors – tested and ready to assembly on detectors PCBs 2 FEE boards with 32 channels (AST1-1) ready to assembly (version-2018) Design in progress:

* 2 detectors PCB;

* light+EM-shielding for two half-planes;

* mechanical support

Ready to assembly on beam channel: July 2021

Forward Silicon Detectors Configuration (BM@N – 2020)

Forward Silicon Detectors in analyzing magnet

Forward Silicon Detectors Configuration

Positions of Si-planes on the beam-channel XZ (left) and YZ (right)

Forward Silicon Detectors Configuration (BM@N – 2020)

Light+EM-shielding Mechanical protection of detectors during assembling

Prototype of mechanical support for Forward Silicon Detectors planes

Forward Silicon Detectors Configuration (BM@N – 2020)

Three tracking silicon planes with FEE boards (using only one type of Silicon Detector Module!)

Number of	First Plane	Second Plane	Third Plane	Total
Si-modules 60x120 mm ²	10	14	18	42
DSSDs	20	28	36	84
ASICs (temp. $\leq +25 \text{ C}^{\circ}$)	100	140	180	420
Power dissipation	28,16 W	39,42 W	50,69 W	118,27 W
PAs	20	28	36	84
FEE PCBs	20	28	36	84
Channels	12800	17920	23040	53760
Area, m ²	0.073	0.102	0.132	0.307

Output Serial analog multiplexer clock speed: 3.9 MHz

Power dissipation per channel: 2.2 mW

Silicon Detector Module

6th Collaboration Meeting of the BM@N Experiment at

the NICA Facility, 26 October 2020

20

Silicon Detector Modules

Silicon Detectors assembled on support frames

Front-end electronics test stand

Testing scenario:

6.

7.

- 1. Connect PCB to stand (HV, LV and temperature will be measured whole time) in cooling and EM shielding box;
- 2. Make pedestal run for each chip without HV at pitch-adapter, save raw data;
- 3. Send configuration data to each chip;
- 4. Measure crosstalk between neighbor channels (external test signal);
- 5. Measure I(PA)= $f(U_{HV})$ leakage current of PA-640n+ (only for n+ PCB);
 - Measure ENC= $f(U_{HV})$ (only for n+ PCB); Save data to the database.

Front-end electronics test stand

First FEE test results

Pedestal run red ASIC #1 PCB #40 read-out frequency 3.6 MHz

(numeration starts with 0th channel)

First FEE test results

Pedestal run red ASIC #2 PCB #40 read-out frequency 3.6 MHz

(numeration starts with 0th channel)

-10

ch2; inter ch0; inter ch105; inter

ch126; inter

0 0

-400

-800

-1200

-1600

mean (ADC counts)

First FEE test results

the NICA Facility, 26 October 2020

Dynamic range red ASIC #1 PCB #40 read-out frequency 3.6 MHz

First FEE test results

Test signal -5 fC in 105th channel ASIC #1 red PCB #40 read-out frequency 3.6 MHz, HV = 75 V (before pedestals subtraction)

ADC counts histograms at 30, 55, 66, 122 and 105 ASIC #1 channels

Power supply

HV power supply

Assembling clean room

Entrance

Working area 42 m²
Clean room standard ISO7 (352,000 (≥0.5 μm) Max.6th Collaboration Meeting of the BM@N Experiment at
the NICA Facility, 26 October 2020Number of Particles Permitted/m³)
30

Forward Silicon Detectors status summary

- Si detectors and PA-640 tested and ready to assembly;
- All 90 Silicon detectors assembled on support frames and wait assembling with FEE;
- Test stand for FSD FEE electronics are done;
- FEE boards assembling and testing in progress;
- First FSD module should be assembled and tested during Fall 2020;
- Test stand for FSD module (with 106Ru + cosmic) design in progress;
- All HV и LV modules are procured and delivered;
- Assembling clean room is done;
- Wire bonder Delvotec set-up and tested (with supplier representative);
- Forward Silicon Detectors mechanical supports design in progress.

Backup slides

Forward Silicon Detectors + GEMs configuration

