Overview of the analysis session

A.Zinchenko

for the BM@N collaboration VBLHEP, JINR, Dubna, Russia

BM@N

Parallel sessions: Analysis meeting - Conference Hall, Building 3 (09:30-13:00)

-Conveners: Alexander Zinchenko

time [id] title	presenter		
09:30 [39] The Status of Identification in Argon Run	PLOTNIKOV, Vasily		
09:50 [40] Adaptation of Monte Carlo to experimental data for the SRC experiment	DRIUK, Andrey		

6th Collaboration Meeting of the BM@N Experiment at the NICA Facility / Programme

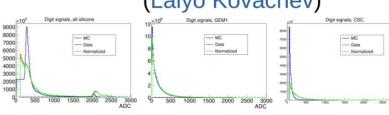
Monday 26 October 2020

10:00	[41] Lambda^{0} reconstruction with embedded and real experimental data in RUN7	BATYUK, Pavel
10:15	[42] TOF700 efficiency comparison between MC and Data in Argon data run 7	KOVACHEV, Lalyo
10:30	Coffee Break	
11:00	[43] Status of the Lambda hyperon analysis in the carbon run	STEPANENKO, Yury
11:20	[44] Geometry update for inner tracker detectors of the BM@N setup for RUN-7 and the next run configurationsrun and in future heavy ion runs	BARANOV, Dmitry
11:35	[45] K^0_S mass resolution	KHUKHAEVA, Anastasia
11:45	[46] Vertex reconstruction - combinatorial approach	ZAVERTYAEV, Mikhail

The status of identification in Argon run - I Vasily Plotnikov

BM@N

Content

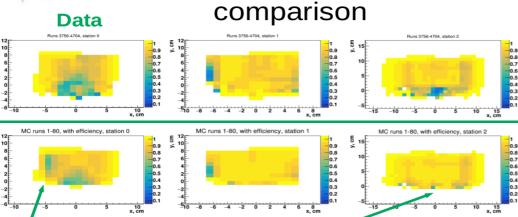

- · Si/GEM/CSC signals normalization
- Data and MC Si/GEM efficiencies comparison
- Data and MC CSC efficiencies comparison
- Data and MC TOF400 efficiencies comparison
- Si/GEM residuals for Data and for MC and EMB after smearing
- Detector effects implemented in MC
- Results of identification comparison for Data and MC with detector effects

BM@N

Content

- Embedding QA
- · First result of the embedding
- Embedding Efficiency in (Y,Pt) bins
- P, Y, Pt spectra of identified π + after embedding
- Possible ways to match MC to the Data
- · Using of another MC generator
- · Detailed Si/GEM geometry

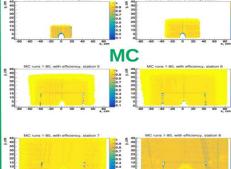
BM@N Si/GEM/CSC signals normalization (Lalyo Kovachev)



- MC signals for Si/GEM/CSC digits normalized with good accuracy to the Data
- Clusters widths in MC match Data with accuracy ~20%

Vasilii Plotnikov, 26,10,2020

Vasilii Plotnikov, 26.10.2020


Data and MC Si/GEM efficiencies

- MQ efficiency higher than Data efficiency on 3-5% in average MC for all Si
- Low MC efficiency for Si1 at X~-5 cm
- High MC efficiency for Si3 at X~0 cm

Data and MC Si/GEM efficiencies comparison

 MC efficiency higher than Data efficiency on 3-5% in average for all GEM

Vasilii Plotnikov, 26.10.2020 8 Vasilii Plotnikov, 26.10.2020 9

26.10.2020 A. Zinchenko 3

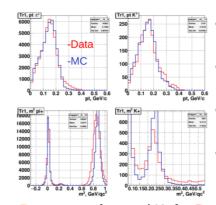
The status of identification in Argon run - II Vasily Plotnikov

BM@N Si/GEM residuals for Data and for MC and EMB after smearing

Station Data/MC/ EMB	Si1, um	Si2, um	Si3, um	GEM1, um	GEM2, um	GEM3, um	GEM4, um	GEM5, um	GEM6, um
Data	117	76	121	264	323	365	370	300	549
MC	126	83	125	254	319	373	367	294	603
EMB	124	75	119	295	329	346	361	311	517

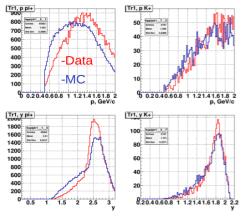
- Lorenz Shifts from Data implemented to the MC and EMB (Lalyo Kovachev)
- σ_{MC}≈σ_{EMB}≈σ_{Data} with accuracy ~10%

BM@N

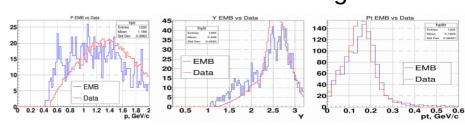

Vasilii Plotnikov, 26.10.2020

BM@N Detector effects implemented in MC

- · We use UrQMD generator
- MC geometry for Si/GEM/CSC/TOF400 matches Data geometry by strips
- For MC we use the same Lorenz shifts in GEM as for Data
- MC signals for Si/GEM/CSC match Data signals
- MC Si/GEM residuals match Data residuals
- For Data and MC we use the same reconstruction chain
- MC efficiencies for Si/GEM/CSC/TOF400 close to the Data efficiencies
- We embedd MC π + to the Data


Vasilii Plotnikov, 26.10.2020

Results of identification comparison for Data and MC with detector effects


- Left m² distribution is normalized to the π + peak
 - Other distributions are normalized to the integral
 - S/B for Data significantly lower than for MC
 - m² distributions for Data and MC close to each other in (π+, K+) region
- Pt spectra of π^+ and K^+ for Data and MC close to each other

Results of identification comparison for Data and MC with detector effects

- All spectra are normalized to the integral
- P and Y spectra of K+ for Data and MC close to each other
- P and Y spectra of π⁺ for Data and MC significantly different

P, Y, Pt spectra of identified π⁺ after embedding

- π +P and Y spectra after embedding are softer than for Data (the same as for MC)
- One MC run (50K events) and one Data run are used to embedding

Vasilii Plomikov, 26.10.2020 16 Vasilii Plomikov, 26.10.2020

BM@N

27.10.2020 A. Zinchenko 4

Status of adapation of Monte Carlo to experimental data for the SRC experiment Andrey Driuk

Motivation

- . The main goal is analysis of nuclear cross section in the C+p
- The efficiency of reconstruction can be obtained from the same analysis of Monte Carlo (MC)
- The problem of adaptation of MC data for experimental data

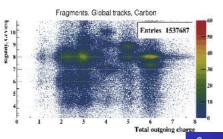


Figure: 1. Fragments of the reaction

Summary

The arm triggers in the geometry

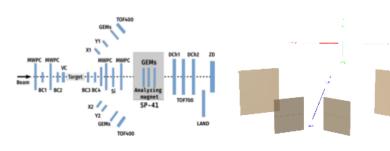


Figure: 2.The experimental setup. The arm triggers are X1-2, Y1-2

Figure: 3. In the simulation chain

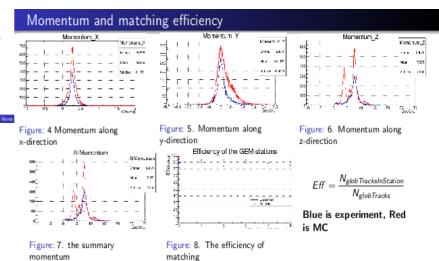
(0) (8) (2) (8)

The main results

- The arm triggers were added in the simulation procedure. It allows us to choose the events in which the triggers worked.
- The efficiency of arm triggers was calculated.

- to use D-tracks and U-tracks in reconstruction procedure
- to use Lorentz shift in the simulation procedure
- to add BC3 and BC4 triggers in the simulation procedure

Efficiency of the arm triggers

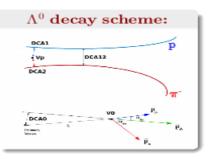

Table: Efficiency of triggers

Efficiency of triggers	MC	Experiment
X1	96.0	98.0
X2	98.3	96.3
Y1	95.9	96.7
Y2	97.4	96.0
X1 & Y1	91.5	93.8
X2 & Y2	95.0	90.5

$$Eff_{X_i} = \frac{NumberOfEvents_{X_i,Y_i,GEM_i,TOF400_i}}{NumberOfEvents_{Y_i,GEM_i,TOF400_i}}$$

$$\textit{Eff}_{Y_i} = \frac{\textit{NumberOfEvents}_{X_i,Y_i,\textit{GEM}_i,\textit{TOF400}_i}}{\textit{NumberOfEvents}_{X_i,\textit{GEM}_i,\textit{TOF400}_i}}$$

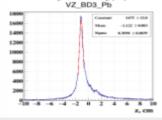
$$Eff_{X_i\&Y_i} = \frac{NumberOfEvents_{X_i,Y_i,GEM_i,TOF400,i}}{NumberOfEvents_{GEM_i,TOF400,i}}$$



A. Zinchenko

Λ-reconstruction in embedded and experimental data in RUN7 - I Pavel Batyuk

Experimental data, analysis definitions, cuts ...

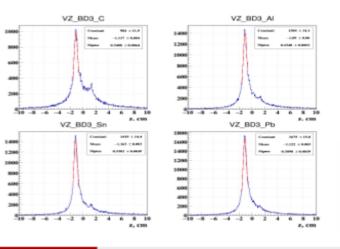


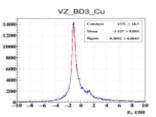
- DCA0, DCA12, DCA1 and DCA2 are "minimum required" cuts to be used with given definitions in the
- The cuts do implicit restrictions on a path of Λ^0 .

$N_{rec.tracks} > 1$ [MEvents], Ar part of RUN7 No primary vertex cut: 51.5

	BD1+FD2	BD2	BD3	FD2	FD3
Pb	2.13	-	1.16	-	2.75
Sn	4.81	0.20	1.88	0.56	5.59
Cu	4.61	0.24	1.89	0.56	5.68
Al	5.23	0.24	2.13	0.80	5.63
C	1.94	0.42	0.54	0.60	1.86
	18.72	1.1	7.6	2.52	21.51

With primary vertex cut: ≈ 5 Cut on V_p : -3 $< V_p(Z) <$ 3 cm

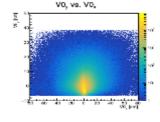


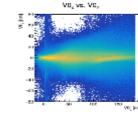

6th Collaboration Meeting of the BM@N Experiment at the NICA Facility

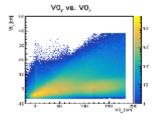
Searching for V_0 , algorithm ...

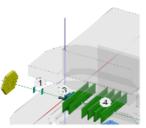
- A pair of two tracks with different signs of Q_p is considered as a candidate to be from Λ^0 decay.
- The chosen tracks are put into a corridor of relatively big width along Z-axis.
- The corridor is separated into small parts by virtual planes corresponding to some values of Z.
- The tracks are extrapolated to those Z by the Kalman filter mechanism aimed at calculating 2d-distance between.
- A set of calculated distances corresponding to the known Z-values is approximated with $P(z) = az^2 + bz + c$. It allows one to reject pairs that can produce a non-diserable edge minimum (a < 0) occurred widely when processing
- If a considering pair has a P(z) parameterization with a>0, a found minimum is considered as approximation to V_0 . The minimum is taken from available calculated distances but not the parameterization used.
- The corridor is divided by factor 2 to reproduce the steps of algorithm already mentioned. The algorithm works till to the corridor width is less than a chosen threshold or the pair does not become to satisfy restrictions.

Primary vertex resolution






- Average V_p resolution along Z is close to 3 mm for all targets (2.6 - 3.4 mm)
- The resolution has approximately the same trend for all trigger conditions

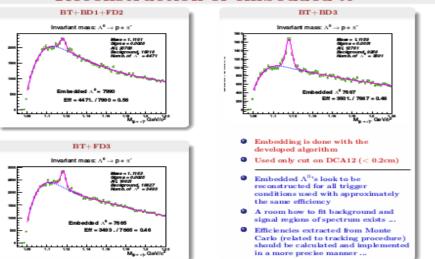

6th Collaboration Meeting of the BM@N Experiment at the NICA Facility

Reconstructed V_0

- Seen probable acceptance for reconstructed secondary vertices in all directions
- A really visible kink (break) in XZ-direction around Z = 100 cm is explained by reconstructed tracks having four hits in the second part of GEM-tracker.

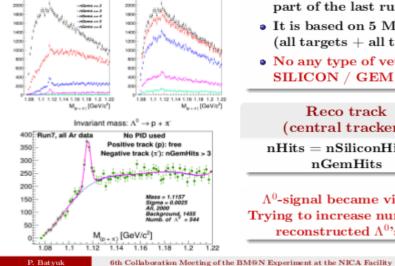
6th Collaboration Meeting of the BM@N Experiment at the NICA Facility

P. Batyuk


6th Collaboration Meeting of the BM@N Experiment at the NICA Facility

A. Zinchenko 26.10.2020

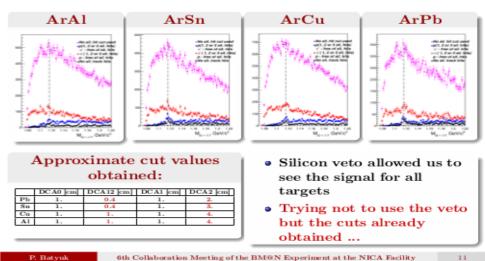
Λ-reconstruction in embedded and experimental data in RUN7 - II Pavel Batyuk



Reconstruction of embedded Λ^0

6th Collaboration Meeting of the BM@N Experiment at the NICA Facility

First Λ^0 's in experimental data of RUN7


- The analysis covers argon part of the last run
- It is based on 5 MEvents (all targets + all triggers)
- No any type of veto for SILICON / GEM used

Reco track (central tracker):

nHits = nSiliconHits +nGemHits

 Λ^0 -signal became visible. Trying to increase number of reconstructed Λ^0 's ...

Testing silicon veto scenarios ...

Ok, the signal from $\Lambda^0 \to \pi^- + p$ exists...

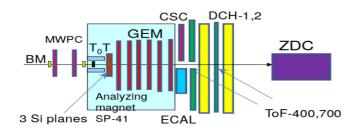
 To do a fully realistic embedding (by adding the detector efficiencies)

What is next?

- To use the embedding for "fine" tuning of tracking procedure to maximize the reconstructed signal
- To get Λ^0 efficiency spectra in p_T and η space
- To do an improvement in the alignment procedure of the BM@N Central Tracker (ALCOPACK)

Thank you for your attention!

6th Collaboration Meeting of the BM@N Experiment at the NICA Facility

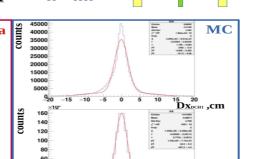

TOF700 efficiency comparison between MC and Data in Argon run 7 - I Lalyo Kovachev

DCH1 TOF700 DCH2

Argon data run 7

Ar beam 3.2 GeV/n Targets Al,C,Sn,Cu,Pb

Schematic drawing of the location of the TOF700 on the BM@N setup


Gem

Si-GEM-DCH1 Matching Criteria

60000

50000

70000

-6 -4 -2 0 2 4

DCH1 TOF700 DCH2

Function: Gaus+pol2 σ Dx ~ 1.7, σ Dy ~ 0.75 Matching criteria: |Dx| < 5 cm, |Dy| < 2 cm

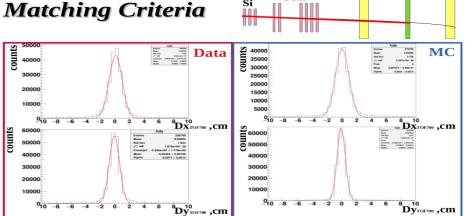
"Bound by one chain"

TOF 700 Particle Identification chain

For **Data** and **MC** we use the **same** Identification chain

We use DCM QGSM Generator

Si-GEM(data) tracks from V. Plotnikov

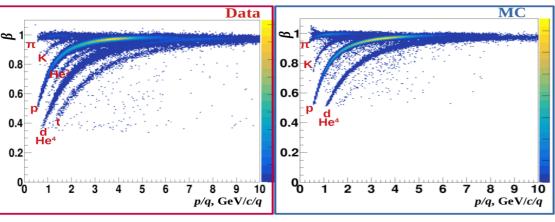

DCH tracks from DCH group

TOF700 hits from Y. Petukhov

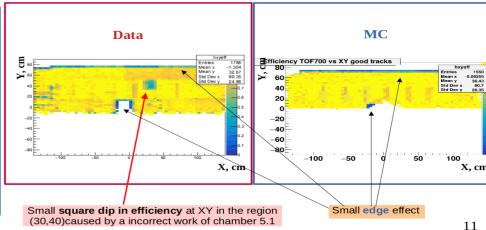
Si-GEM tracks are extrapolated to the DCH1 z-position and matched against the DCH1 tracks

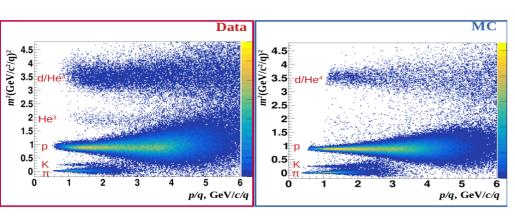
Successfully matched tracks are extrapolated to the ${
m TOF700}$ planes and matched against the ${
m TOF700}$ hits

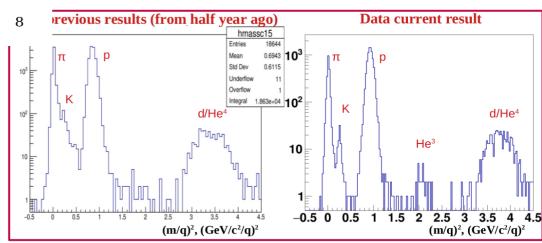
Si-GEM-DCH-TOF700


Function: Gaus $\sigma Dx \sim 0.8$, $\sigma Dy \sim 0.65$ Matching criteria: |Dx| < 2.5 cm, |Dy| < 2 cm

6


TOF700 efficiency comparison between MC and Data in Argon run 7 - II Lalyo Kovachev


β vs p/q



Efficiency for a good track Si-GEM + DCH matching with hit TOF 700.

Data plot chosen to represent **similar statistics** actual data statistics on the next slide

There is a **negligeble** momentum systematics effect.

Reconstructed mass square of momenta below 1.5 GeV

13

Status of the Λ hyperon analysis in the carbon beam - I

Please contact me for

more detailed info

BM@N configuration in Run6

BM@N

Central tracker

One plane of a forward Si detector

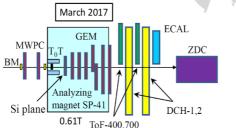
Yury Stepanenko

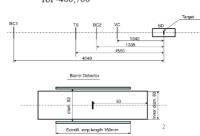
6 GEM stations

• 5 GEM detectors (66x41 cm2)

2 GEM detectors (163x45 cm2)

Triggers: BD, BC1, BC2, T0, VETO


Beam Ekin=4.0 and 4.5 GeV


• Intensity 10⁵ per spill

Spill duration 2-2.5 sec.

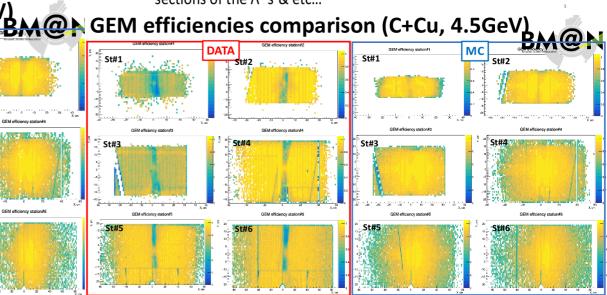
Physics: measure inelastic reactions C+A→X

• Targets: C, Al, Cu, Pb

Analysis flow & current status

• Main goal of current analysis – cross-check with previous analysis (was performed by Gleb Pokatashkin)

• Embedding procedure:


Extract Primary Vertices (PV) from data

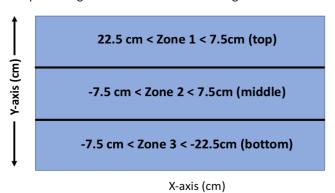
Simulate DQGSM events from extracted data PV

Create set of events for the PV

- Find event in set with at least one Λ^0 to be reconstructed
- Insert digits from the Λ^0 events in the data events
- Data reconstruction & analysis <= now we are here!!
 - Apply detectors efficiencies to embedded events
 - Make control plots, calculate embedding efficiency, calculate crosssections of the Λ^{0} 's & etc...

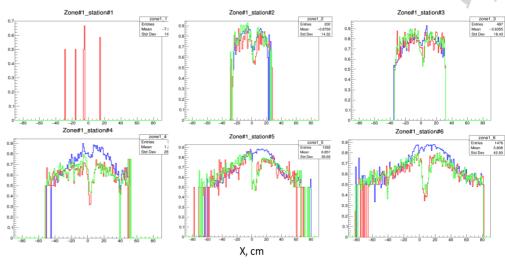
GEM efficiencies comparison (C+C, 4.0GeV) St#2

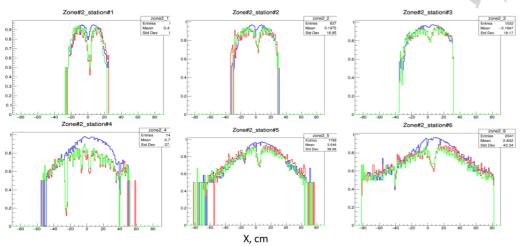
A. Zinchenko 26.10.2020 10

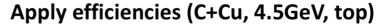

Status of the Λ hyperon analysis in the carbon beam - II

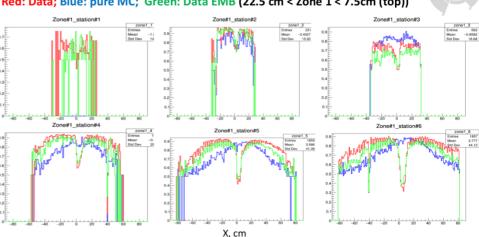
Yury Stepanenko

Apply efficiencies (check)


- Each GEM plane was divided into to 3 regions along Y-axis
 - Compare integral for efficiencies at each regions

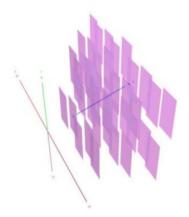

Apply efficiencies (C+C, 4.0GeV, top)

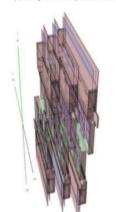

Red: Data; Blue: pure MC; Green: Data EMB (22.5 cm < Zone 1 < 7.5cm (top))


Apply efficiencies (C+C, 4.0GeV, middle)

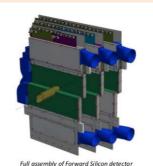
Red: Data; Blue: pure MC; Green: Data EMB (7.5 cm < Zone 2 < -7.5cm (middle))

Red: Data; Blue: pure MC; Green: Data EMB (22.5 cm < Zone 1 < 7.5cm (top))


Geometry update for inner tracker detectors of the BM@N setup for RUN-7 and the next run configurations - I Dmitry Baranov

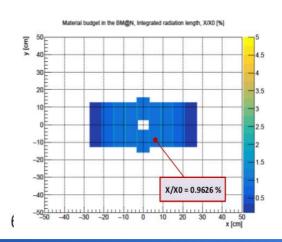

Detailed geometry creation

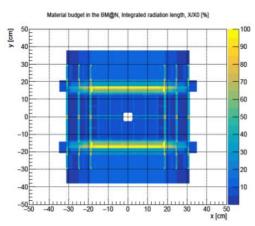
- ☐ The detailed ROOT geometry was created for the following configurations:
 - GEM RUN-7 (Spring 2018)
 - GEM RUN SRC (Spring 2018)
 - GEM Future Configuration (2020-2021)
 - Forward SILICON Future Configuration (2020-2021)
- ☐ The design of these detector has a lot of supporting elements, such as frames, electronics and others. It influences the detector efficiency.
- ☐ There are two versions of the ROOT geometry (simplified and detailed) for each configuration.


Simplified ROOT geometry: only sensitive planes composed of basic silicon-modules


Detailed ROOT geometry: sensitive planes and supporting elements (passive volumes)

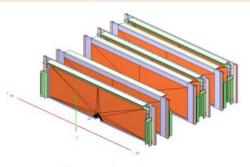
Forward Silicon Detector



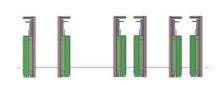


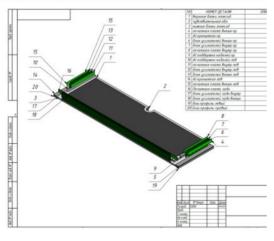
- 1	Боховая плина	Answermenall crease	S14 see	Вау чувстветствий зоны 51-сунсоров
2	Панка	Апонинений сили	612 sex	Вае чувстветствной цена Si-севсоров
3	Iltania	Ализивнений сили	10 seu	Вне чувстветствией зоны Косенсоров
4	Плении	Азичатиевый сили	1.5 xxx	Вае чувстветельной хопы Si-сепсоров
- 5	Пластина	Аломиневый спла	3 nex	Вые чувстветствной ины 50-сексоров
611	Pelice	Annument case	Суппарныя голиння	Вие чутстветствной мина Si-севсоров
12	Плистин	Ализапписвый сплив	1.5 me:	Вие чувствительной топы Ni-сепсоров
13	Боковые стина экрана	Аломиневый спли	27 see	Вые чувстветствной зоны 50-сексоров
.14	Боковая степка экрани	Anominosit cone	27 sex -	Вис чувстветствой зоны Si-сеноров
15	Геризонектьный стинка парамя	Повощие	27 see	В чувствительной эти 51-спистров
16	Ливиче стиму экрана	Homotocy	3 sex	В чувстветстваний зоне 51-сенсоров
17	Плика прика	Amountment case	3 see	Вие чувствующий ины 51-сектров
1819	Топкостотный погрубов	Плисти АБС	Crossa - 2 see	Вие чувстветствой зоны бо севоров
	Втеми предлени или			

Forward Silicon Detector: material budget

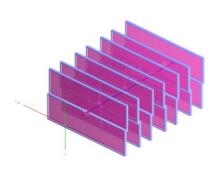


Geometry update for inner tracker detectors of the BM@N setup for RUN-7 and the next run configurations - II **Dmitry Baranov**

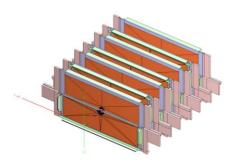

GEM: configuration for RUN-7 (RunSpring2018)


Detailed geometry of GEMs for RUN-7: common view

Detailed geometry of GEMs for RUN-7: front view (XY)

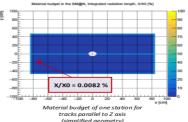


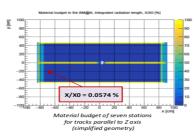
Detailed geometry of GEMs for RUN-7: side view (ZY)

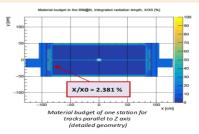


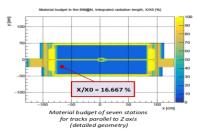
Detailed ROOT geometry have been prepared according to schemes of half-planes provided by S. Piyadin (and others

GEM: configuration for the next run (FutureConfig2020)




Simplified ROOT geometry of GEMs for the next run: only sensitive planes (as volumes filled with a gas mixture) and ordinary frames. ROOT file: GEMS FutureConfig2020.root

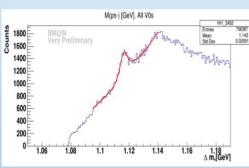


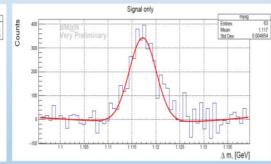

Detailed ROOT geometry of GEMs for the next run: passive elements (such as frames, electronics and material layers in

Material budget: GEM configuration for the next run (FutureConfig2020)

17/19

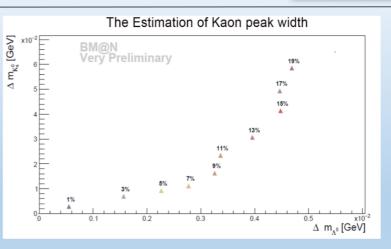
K⁰s mass resolution Anastasia Khukhaeva





Real data in Run6

The fit reveal the width of the signal equal to 4.85 Mev


The resulting graph

25 October 2020

 ${}^{\bullet}$ We may expect the width of the $\ K^0_s$ in the region of

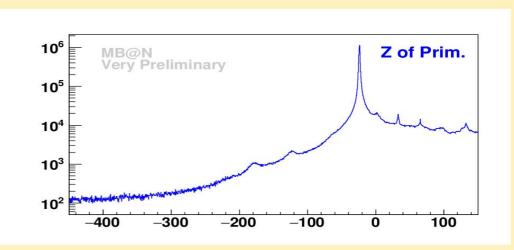
58.53 ± 1.22 MeV

25 October 2020

Vertex reconstruction - combinatoric approach Mikhail Zaveryaev - I

Full Combinatoric Algorithm.

- 1. The basic principle: if among **N** tracks the deviation of at least one track exceed a certain limit then look through **N** combinations of **N-1** tracks.
- 2. If in each **N** combinations among **N-1** tracks at least one track exceed a certain limit then look through C_{N-k}^k , k=2, combinations. 3. Process continue up to 2 tracks combinations.

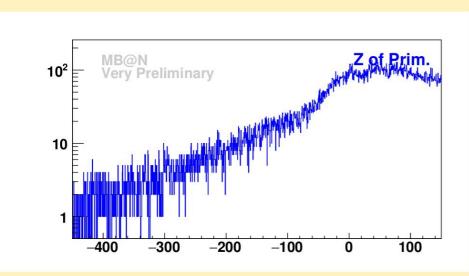

Problem : to run through ${\cal C}^k_{N-k}$ takes time.

The only tuning parameter is the maximum deviation of the track from the primary vertex.

Z of Primary vertex position.

M.Zavertyaev

M.Zavertyaev Moscow, October 25, 2020 – 4 / ??


Vertex reconstruction - combinatoric approach Mikhail Zaveryaev - II

Z of Primary vertex position. Beam Data, run 1403.

M.Zavertyaev Moscow, October 25, 2020 – 17 / ??

Luminosity Evaluation Procedure.

- The position of the beam counter is visible in the vertices positions.
- The X Y of the vertices distribution at beam counter gives the information about beam profile.
- The X-Y of the vertices distribution at target gives the information about beam profile.
- lacktriangle Cut on X-Y at beam counter and target positions for the events with the only one track let us evaluate the number of beam particles at target and finally calculate the luminosity.
- The efficiency of the beam track reconstruction will be taken from simulation.

M.Zavertyaev Moscow, October 25, 2020 – 19 / ??

Summary

✓ Analysis efforts in several directions: Run6, Run7 PID, Run7 V0s, SRC, preparations for future runs.

Bound by one chain, Tied by one aim.