
Performance optimization of the BmnRoot
reconstruction modules
S N E M N Y U G I N , S M E RT S , A I U F RYA K O VA

S A I N T - P E T E R S B U R G S T A T E U N I V E R S I T Y

J O I N T I N S T I T U T E O F N U C L E A R R E S E A R C H

6TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN26 Oct 2020

Outline

26 Oct 2020 6TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN 2

• Performance study and performance bottlenecks of the BmnRoot reconstruction modules.

• Algorithmic optimization of the BmnNewFieldMap.

• Compiler optimizations and code improvements of the BmnRoot reconstruction modules.

• Adaptation of the BmnRoot reconstruction modules to multicore.

Work is supported by Russian Foundation for Basic Research grant 18-02-40104 mega.

26 Oct 2020 6TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN 3

BmnRoot framework

 BmnRoot framework is based on the FairRoot and FairSoft software packages (GSI, Darmstadt).

 Complex structure (simulation/analysis) with a lot of modules, hundreds of thousands lines of code.

 Simulation: setup configuration and geometry, beam parameters, Monte-Carlo event generators (BOX, DQGSM, UrQMD, SHIELD),

Virtual Monte-Carlo, transport codes (Geant3, Geant4, Fluka), magnetic field maps, digitizers etc.

 Simulation performance should be improved.

BmnRoot simulation

modules

Reasonable Monte-Carlo

simulation needs for large

sampling size.

Realistic simulations are

time-consuming.

26 Oct 2020 COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN 4

Optimization of the BmnRoot simulation modules

Quality Assurance for simulation

Scalability of the BmnRoot simulation

parallelized with OpenMP

OpenMP parallelization

BmnGemStripDigitizer
…

FairMCPoint* GemStripPoint;

Int_t NNotPrimaries = 0;

#pragma omp parallel

#pragma omp for schedule(dynamic)

for (UInt_t ipoint = 0; ipoint < fBmnGemStripPointsArray->GetEntriesFast();

ipoint++) {

GemStripPoint = (FairMCPoint*) fBmnGemStripPointsArray->At(ipoint);
…

Performance optimization (parallelization of most time-consuming hotspots).

Tests of correctness and scalability of optimized code (Quality Assurance).

QA - 1 thread QA - 4 thread

26 Oct 2020 6TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN 5

BmnRoot framework

BmnRoot reconstruction

modules

1. Reconstruction: setup configuration and geometry, all detector subsystems (GEMs, multiwired chambers, drift

chambers, silicon detector modules, zero-degree calorimeters, TOF, two arms for the SRC experiment etc.), beam

parameters, magnetic field accounting, digitizers, matching (local/global) etc.

2. Reconstruction performance should be improved.

BmnRoot reconstruction

time vs events multiplicity

26 Oct 2020 6TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN 6

1. Search for high momentum tracks.
Construct 4-hits candidates and estimate their parameters in zone 2. Propagate

each candidate to hits in zone 1 and zone 0 by Kalman Filter (KF) etc.

2. Search for high momentum tracks with low efficiency.
Construct 3-hits candidates and estimate their parameters in zone 2 for

UNUSED hits. Propagate each candidate to hits in zone 1 and zone 0 by KF etc.

3. Search for low momentum tracks with inefficiency.
Construct 2-hits candidates in zone 1 for UNUSED hits. Propagate each

candidate to hits in zone 0 by straight line in ZY plane etc.

GEM – Gas Electron Multiplier.

SI – Silicon detector.

BmnRoot reconstruction (new version)

Track reconstruction algorithm

BmnInnerTrackingRun7::Exec()
…

FindTracks_4of4_OnLastGEMStations();

FindTracks_3of4_OnLastGEMStations();

fNHitsCut = 5;

FindTracks_2of2_OnFirstGEMStationsDownstream();

FindTracks_2of2_OnFirstGEMStationsUpstream();

…

26 Oct 2020 6TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN 7

 Monte Carlo data 1 sec/event

 Experimental data 6 sec/event

 One file (200 000 event) up to 2 weeks

Performance bottlenecks of the BmnRoot reconstruction modules

Hotspots of the BmnRoot reconstruction modules by

Intel Parallel Studio - Intel® VTune™ Profiler

Testbench
CPU: Intel Xeon E-2136 @

4.5GHz Turbo (6C 2xHT, L3

Cache 8MB)

RAM: 32GB 2666MHz DDR4

OS: Ubuntu 16.04.6 LTS

Testcase
Simulation data with DQGSM

generator

1000-5000 events.

Experimental data: Run 7 at

BM@N, Argon beam, Al target.

Macro run_reco_bmn.C

H

O

T

S

P

O

T

S

Analysis summary

A lot of hotspots belong to the BmnField

module – load of the analyzing magnet field:

• 3D Cartesian lattice;

• piecewise linear interpolation between

lattice nodes;

• extrapolation outside known values.

Details of CPU Time Consumption

Si+GEM Track Finder: 45%

Global Matching: 21%

Vertex Finder: 19%

26 Oct 2020 6TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN 8

Optimization of the BmnRoot reconstruction modules

Compiler (GCC) optimization

DEBUGRELEASE

(O2 level optimization)

Tracking parameters selection

Before optimization

Monte Carlo 1 sec/event

Experimental 6 sec/event

One file (200 000 events) 2 weeks

Compiler (GCC) optimization

Aggressive vectorization.

Autoparallelization of loops.

Profile-guided optimization.

Data alignment.

Various kinds of loops optimization

etc



not efficient

After optimization

Monte Carlo 0.3 sec/event

Experimental 0.7 sec/event

One file (200 000 events) 39 hours

Source code improvements

1. More efficient addressing.

2. Replacement of small arrays to variables.

3. More efficient programming of arithmetical expressions etc.

Low effect (CPU time reduction by percent's)

26 Oct 2020 6TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN 9

Optimization of the BmnRoot reconstruction modules

1. Second hotspot next to the Kalman Filter.

2. Measured values of the analyzing magnet’s field are saved at discrete set of 3-

dimensional cubic lattice.

3. Proposal for optimization – replace linear-piecewise interpolation by constant-

piecewise interpolation. Calculation for 8 vertices of cube elementary cell is

not necessary => reduction of number of floating point operations.

Algorithmic optimization of BmnFieldMap

Example of the code (linear interpolation of

magnetic field)

Δx = 0.25 cm

Δy = 0.45 cm

Δz = 0.17 cm

26 Oct 2020 6TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN 10

Optimization of the BmnRoot reconstruction modules

Optimized code of FieldInterpolate method of

BmnNewFieldMap class.

Quality Assurance for optimized code.

Histogram for the number of reconstructed hits

 Build in Debug mode (compiler optimization switched off) reduced

total execution time by 10%.

 Build in O2 optimization mode reduced execution time by 4%.

 Execution time of the BmnField is 7% from total reconstruction

time.

 Quality Assurance methods used in BM@N demonstrates very small

difference between non-optimized and optimized results.

26 Oct 2020 6TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN 11

Parallelization of the BmnRoot reconstruction modules

BmnInnerTrackingRun7::FindTracks_4of4_OnLastGEMStations() {

const Int_t nxRanges = 8;

const Int_t nyRanges = 5;

...

vector<BmnTrack> candidates;

vector<BmnTrack> sortedCandidates;

Int_t nThreads = THREADS_N;

vector<vector<BmnTrack>> candsThread(nThreads);

clock_t t0 = 0;

Int_t threadNum;

Int_t sH8 = sortedHits[8].size();

#pragma omp parallel if(sH8 > 100) num_threads(nThreads)

#pragma omp for // schedule(static,1)

for (Int_t ii = 0; ii < sH8; ++ii) {

BmnHit* hit8;

hit8 = sortedHits[8].at(ii);

...

Track finders OpenMP parallelization

Reasonable scalability is not yet received.

Possible reasons of low efficiency:

 In many cases number of loops iterations is zero so efficiency of OpenMP-

parallelization is low.

 Most significant hotspot relates to the Kalman filter, so it should be optimized first.

Optimization for shared memory systems (multicore) with OpenMP.

Restrictions:

 Syntax – range-based for loops are not supported by OpenMP.

 Program’s flow – breaks inside loops are not allowed, loop dependencies are not allowed.

 Overhead costs - only computationally “heavy” code fragments (loops) should be

parallelized.

What next?

 Study of hotspots. Their reasons and ways of elimination.

 Kalman filter optimization?

 Vectorization.

 Hybrid computing.

 Distributed computing etc.
Also OpenMP tasks have been tried. Not efficient

26 Oct 2020 6TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN 12

Conclusion

• Performance studies are performed and performance bottlenecks of the BmnRoot reconstruction
modules are revealed.

• Performance bottlenecks of the BmnRoot reconstruction modules are localized.

• Various approaches to optimization of the BmnRoot tracks reconstruction modules were tested
and estimates of their efficiency are obtained.

26 Oct 2020 6TH COLLABORATION MEETING OF THE BM@N EXPERIMENT. S.NEMNYUGIN 13

Thank you!

