Status of Workflow Implementation for BM@N Distributed Processing

BM@N events reconstruction data flow

- Raw data is produced by DAQ of the detector and stored on the online storage system
 - Initial processing of data (DQM) started on "on-line" resources (dedicated cluster)
- Relevant raw data should migrate to permanent storage and to storages which close to computing facilities
- Data should be processed and results stored for future analysis

Crucial features of the data flow

- Distributed heterogeneous storage systems: EOS, dCache, tapes
- Distributed heterogeneous computing resources: LHEP cluster, CICC resources, Govorun
- Intensive data processing and transfers

Middleware services

- Middleware services link computing and storage elements to each other, hide the variety and complexity of the IT-infrastructure and provide automation.
- Components:
 - Workflow management system controls the process of data processing on each step of processing. Produces chains of tasks required for processing of certain amount of data, manages execution of tasks.
 - Workload management system processes tasks execution by splitting of the task to the small jobs, where each job process a small amount of data. Manages the distribution of jobs across the set of computing resources. Takes care about generation of a proper number of jobs till task will not be completed (or failed).
 - **Data management system** responsible for distribution of all data across computing facilities, data management (storage, replication, deletion, etc.)
 - **Data transfer service** takes care about major data transfers. Allow asynchronous bulk data transfers.
 - Information system stores information about all services, storage systems and computing resources, protocols, etc.

- Distributes majority of LHC data across WLCG infrastructure
- 7 WLCG and 14 non-WLCG instances
- ~28 Virtual Organisations
 - ATLAS, CMS, LHCb, AMS, NA62, Compass, ILC, Magic, Belle II, Mice, Xenon, Snoplus, GridPP, DUNE, LZ, Solidexperiment.org, SKA, Ligo, Icecube, Elixir, NP02 (part of DUNE), CAST, ESCAPE, Eiscat.se, Virgo, BES III, JUNO, Pierre Auger Observatory, CEPC
- Integrated with experiment frameworks: Rucio, PhEDEx, DIRAC
- Transferred in 2019 more than 800 million files and 0.95 Exabyte of data

Community

Workload management system

- Initially developed for ATLAS experiment at CERN, PanDA now widely used by many other experiments, in HEP and beyond
- PanDA WMS allows to organise highly scalable data processing on almost any type of resources: grid sites, academic or industry clouds, high performance computers

CRIC: a high-level information middleware

to configure computing environment and describes resources as VOs need

Workflow management

- Key component of the infrastructure workflow management system
- All other systems and services, such as FTS, Rucio, PanDA, CRIC — can be used literally out of the box, while workflow management system has to be developed basing on the needs of the particular experiment
- Each pipeline Monte Carlo simulation, reconstruction, events filtering — must be declared in the workflow management system
- Based on Apache Airflow framework

Scalable

Airflow has a modular architecture and uses a message queue to orchestrate an arbitrary number of workers.

Airflow is ready to scale to infinity.

Extensible

Easily define your own operators and extend libraries to fit the level of abstraction that suits your environment.

Dynamic

Airflow pipelines are defined in Python, allowing for dynamic pipeline generation. This allows for writing code that instantiates pipelines dynamically.

Elegant

Airflow pipelines are lean and explicit. Parametrization is built into its core using the powerful Jinja templating engine.

Status

- Information system deployed, integration with JINR SSO in progress, is being filled by data
- File transfer service deployed, testing
- Distributed data management service deployed, testing
- Workload management service deployed, tested, ready to receive tasks
- Workflow management service deployed, integration with JINR SSO done, integration with the workload management service — done, pipelines are being designed and implemented
- VOMS service deployed, production
- Overall status: all services are ready to receive tasks
- Ongoing work: workflow pipelines implementation and conducting a task between the components of the infrastructure