

The target station, mechanics of the beam diagnostics tools, X-ray tests of the carbon beam pipe

LLC "Vacuum systems and technologies" A. Kubankin at all.

October 2019

Radiation Physics Laboratory of Belgorod State University LLC "Vacuum systems and technologies" LLC "R@D Vacuum"

Manufactured beam pipe before the target

Content

- 1. The target station
- 2. The mechanics of beam diagnostics tools
- 3. X-ray tests of the carbon beam pipe

The target station with piezoelectric actuator

The target station with pneumatic actuator

The target station with pneumatic actuator

The mechanics of beam diagnostics tools

Main requirements for the mechanics:

- vacuum compatibility;
- no magnetic materials.

X-Y Si-profilemeter

The mechanics of beam diagnostics tools

The mechanics of beam diagnostics tools

One of important tasks of BM@N setup development is quality control of the carbon beam pipe.

The task: development of the experimental setup for measurement of thickness of carbon tubes (beam pipe) wall.

Main characteristics:

- accuracy of thickness measurement must be better than 100 um for thicknesses of 0.5...5 mm;
- possibility to perform the measure in scanning mode including edges of the tube (scanning must be without any «black» areas of the tube surface);
- tube diameter 50...100 mm;
- minimal area of the tube surface element smaller than 1 mm².

The experimental setup. 1 – the tube; 2 – X-ray spectrometer mount plate; 3 – X-ray spectrometer; 4 – lead collimator; 5 – area of X-ray flux; 6 – X-ray tube.

The results of the wall thickness measurements for a fixed coordinate along axis of the tube.

The achieved accuracy of the wall thickness measurement: better than 10 um for the time of measurement 10 seconds (one point).

The additional result: possibility to control local elemental composition of the tube material on the base of measurement of Xray fluorescence spectra.

Measurement of transmitted X-ray intensity

Measurement of X-ray fluorescence spectrum

The vacuum beam pipe

The modernized area of the beam pipe

The main results

- The following parts of BM@N experimental setup have been developed and produced: mechanics of the beam diagnostics tools and target station. The both devices do not have magnetic materials and can be used in conditions of strong magnetic field.
- The experimental setup for measurement of wall thickness of carbon beam pipe is developed and tested.
- The production of the vacuum ion beam pipe will start soon.

Thank you so much for the attention!